This is the second part of the ML series. For your convenience you can find other parts in the table of contents in Part 1 – Linear regression in MXNet
Image that you have only a data warehouse with SQL capabilities to train and evaluate your models. Last time we ran Python code to calculate linear regression for Iris dataset, today we are going to do exactly the same but in SQL.
The code provided below is for MS SQL 2017.
Let’s start with dataset and schema:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
CREATE TABLE samples( sepal_length float ,sepal_width float ,petal_length float ,petal_width float ,iris varchar(255) ); INSERT INTO samples VALUES (5.1,3.5,1.4,0.2,'setosa'), (4.9,3,1.4,0.2,'setosa'), (4.7,3.2,1.3,0.2,'setosa'), (4.6,3.1,1.5,0.2,'setosa'), (5,3.6,1.4,0.2,'setosa'), (5.4,3.9,1.7,0.4,'setosa'), (4.6,3.4,1.4,0.3,'setosa'), (5,3.4,1.5,0.2,'setosa'), (4.4,2.9,1.4,0.2,'setosa'), (4.9,3.1,1.5,0.1,'setosa'), (5.4,3.7,1.5,0.2,'setosa'), (4.8,3.4,1.6,0.2,'setosa'), (4.8,3,1.4,0.1,'setosa'), (4.3,3,1.1,0.1,'setosa'), (5.8,4,1.2,0.2,'setosa'), (5.7,4.4,1.5,0.4,'setosa'), (5.4,3.9,1.3,0.4,'setosa'), (5.1,3.5,1.4,0.3,'setosa'), (5.7,3.8,1.7,0.3,'setosa'), (5.1,3.8,1.5,0.3,'setosa'), (5.4,3.4,1.7,0.2,'setosa'), (5.1,3.7,1.5,0.4,'setosa'), (4.6,3.6,1,0.2,'setosa'), (5.1,3.3,1.7,0.5,'setosa'), (4.8,3.4,1.9,0.2,'setosa'), (5,3,1.6,0.2,'setosa'), (5,3.4,1.6,0.4,'setosa'), (5.2,3.5,1.5,0.2,'setosa'), (5.2,3.4,1.4,0.2,'setosa'), (4.7,3.2,1.6,0.2,'setosa'), (4.8,3.1,1.6,0.2,'setosa'), (5.4,3.4,1.5,0.4,'setosa'), (5.2,4.1,1.5,0.1,'setosa'), (5.5,4.2,1.4,0.2,'setosa'), (4.9,3.1,1.5,0.1,'setosa'), (5,3.2,1.2,0.2,'setosa'), (5.5,3.5,1.3,0.2,'setosa'), (4.9,3.1,1.5,0.1,'setosa'), (4.4,3,1.3,0.2,'setosa'), (5.1,3.4,1.5,0.2,'setosa'), (5,3.5,1.3,0.3,'setosa'), (4.5,2.3,1.3,0.3,'setosa'), (4.4,3.2,1.3,0.2,'setosa'), (5,3.5,1.6,0.6,'setosa'), (5.1,3.8,1.9,0.4,'setosa'), (4.8,3,1.4,0.3,'setosa'), (5.1,3.8,1.6,0.2,'setosa'), (4.6,3.2,1.4,0.2,'setosa'), (5.3,3.7,1.5,0.2,'setosa'), (5,3.3,1.4,0.2,'setosa'), (7,3.2,4.7,1.4,'versicolor'), (6.4,3.2,4.5,1.5,'versicolor'), (6.9,3.1,4.9,1.5,'versicolor'), (5.5,2.3,4,1.3,'versicolor'), (6.5,2.8,4.6,1.5,'versicolor'), (5.7,2.8,4.5,1.3,'versicolor'), (6.3,3.3,4.7,1.6,'versicolor'), (4.9,2.4,3.3,1,'versicolor'), (6.6,2.9,4.6,1.3,'versicolor'), (5.2,2.7,3.9,1.4,'versicolor'), (5,2,3.5,1,'versicolor'), (5.9,3,4.2,1.5,'versicolor'), (6,2.2,4,1,'versicolor'), (6.1,2.9,4.7,1.4,'versicolor'), (5.6,2.9,3.6,1.3,'versicolor'), (6.7,3.1,4.4,1.4,'versicolor'), (5.6,3,4.5,1.5,'versicolor'), (5.8,2.7,4.1,1,'versicolor'), (6.2,2.2,4.5,1.5,'versicolor'), (5.6,2.5,3.9,1.1,'versicolor'), (5.9,3.2,4.8,1.8,'versicolor'), (6.1,2.8,4,1.3,'versicolor'), (6.3,2.5,4.9,1.5,'versicolor'), (6.1,2.8,4.7,1.2,'versicolor'), (6.4,2.9,4.3,1.3,'versicolor'), (6.6,3,4.4,1.4,'versicolor'), (6.8,2.8,4.8,1.4,'versicolor'), (6.7,3,5,1.7,'versicolor'), (6,2.9,4.5,1.5,'versicolor'), (5.7,2.6,3.5,1,'versicolor'), (5.5,2.4,3.8,1.1,'versicolor'), (5.5,2.4,3.7,1,'versicolor'), (5.8,2.7,3.9,1.2,'versicolor'), (6,2.7,5.1,1.6,'versicolor'), (5.4,3,4.5,1.5,'versicolor'), (6,3.4,4.5,1.6,'versicolor'), (6.7,3.1,4.7,1.5,'versicolor'), (6.3,2.3,4.4,1.3,'versicolor'), (5.6,3,4.1,1.3,'versicolor'), (5.5,2.5,4,1.3,'versicolor'), (5.5,2.6,4.4,1.2,'versicolor'), (6.1,3,4.6,1.4,'versicolor'), (5.8,2.6,4,1.2,'versicolor'), (5,2.3,3.3,1,'versicolor'), (5.6,2.7,4.2,1.3,'versicolor'), (5.7,3,4.2,1.2,'versicolor'), (5.7,2.9,4.2,1.3,'versicolor'), (6.2,2.9,4.3,1.3,'versicolor'), (5.1,2.5,3,1.1,'versicolor'), (5.7,2.8,4.1,1.3,'versicolor'), (6.3,3.3,6,2.5,'virginica'), (5.8,2.7,5.1,1.9,'virginica'), (7.1,3,5.9,2.1,'virginica'), (6.3,2.9,5.6,1.8,'virginica'), (6.5,3,5.8,2.2,'virginica'), (7.6,3,6.6,2.1,'virginica'), (4.9,2.5,4.5,1.7,'virginica'), (7.3,2.9,6.3,1.8,'virginica'), (6.7,2.5,5.8,1.8,'virginica'), (7.2,3.6,6.1,2.5,'virginica'), (6.5,3.2,5.1,2,'virginica'), (6.4,2.7,5.3,1.9,'virginica'), (6.8,3,5.5,2.1,'virginica'), (5.7,2.5,5,2,'virginica'), (5.8,2.8,5.1,2.4,'virginica'), (6.4,3.2,5.3,2.3,'virginica'), (6.5,3,5.5,1.8,'virginica'), (7.7,3.8,6.7,2.2,'virginica'), (7.7,2.6,6.9,2.3,'virginica'), (6,2.2,5,1.5,'virginica'), (6.9,3.2,5.7,2.3,'virginica'), (5.6,2.8,4.9,2,'virginica'), (7.7,2.8,6.7,2,'virginica'), (6.3,2.7,4.9,1.8,'virginica'), (6.7,3.3,5.7,2.1,'virginica'), (7.2,3.2,6,1.8,'virginica'), (6.2,2.8,4.8,1.8,'virginica'), (6.1,3,4.9,1.8,'virginica'), (6.4,2.8,5.6,2.1,'virginica'), (7.2,3,5.8,1.6,'virginica'), (7.4,2.8,6.1,1.9,'virginica'), (7.9,3.8,6.4,2,'virginica'), (6.4,2.8,5.6,2.2,'virginica'), (6.3,2.8,5.1,1.5,'virginica'), (6.1,2.6,5.6,1.4,'virginica'), (7.7,3,6.1,2.3,'virginica'), (6.3,3.4,5.6,2.4,'virginica'), (6.4,3.1,5.5,1.8,'virginica'), (6,3,4.8,1.8,'virginica'), (6.9,3.1,5.4,2.1,'virginica'), (6.7,3.1,5.6,2.4,'virginica'), (6.9,3.1,5.1,2.3,'virginica'), (5.8,2.7,5.1,1.9,'virginica'), (6.8,3.2,5.9,2.3,'virginica'), (6.7,3.3,5.7,2.5,'virginica'), (6.7,3,5.2,2.3,'virginica'), (6.3,2.5,5,1.9,'virginica'), (6.5,3,5.2,2,'virginica'), (6.2,3.4,5.4,2.3,'virginica'), (5.9,3,5.1,1.8,'virginica') |
Nothing fancy, just a table with Iris data. Next, the training:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
WITH transformed AS ( SELECT TOP 100000 S.*, CASE WHEN S.iris = 'setosa' THEN 1.0 ELSE 0.0 END AS is_setosa, CASE WHEN S.iris = 'virginica' THEN 1.0 ELSE 0.0 END AS is_virginica FROM samples AS S ORDER BY (SELECT ABS(CHECKSUM(NewId()))) ), training AS ( SELECT TOP 100 * FROM transformed ORDER BY (SELECT RAND()) ), test AS ( SELECT * FROM transformed EXCEPT SELECT * FROM training ), learning AS ( SELECT CAST(0.0 AS float) as w1, CAST(0.0 AS float) as w2, CAST(0.0 AS float) as w3, CAST(0.0 AS float) as w4, CAST(0.0 AS float) as w5, CAST(0.0 AS float) as b1, CAST(0.0 AS float) as b2, CAST(0.0 AS float) as b3, CAST(0.0 AS float) as b4, CAST(0.0 AS float) as b5, CAST(0.0 AS float) as gw1, CAST(0.0 AS float) as gw2, CAST(0.0 AS float) as gw3, CAST(0.0 AS float) as gw4, CAST(0.0 AS float) as gw5, CAST(0.0 AS float) as gb1, CAST(0.0 AS float) as gb2, CAST(0.0 AS float) as gb3, CAST(0.0 AS float) as gb4, CAST(0.0 AS float) as gb5, 1 as iteration, CAST(0.0 AS float) as mse, 1 as dummy UNION ALL SELECT R.w1, R.w2, R.w3, R.w4, R.w5, R.b1, R.b2, R.b3, R.b4, R.b5, R.gw1, R.gw2, R.gw3, R.gw4, R.gw5, R.gb1, R.gb2, R.gb3, R.gb4, R.gb5, R.iteration, R.mse, R.dummy FROM ( SELECT CAST(Z.w1 AS float) AS w1, CAST(Z.w2 AS float) AS w2, CAST(Z.w3 AS float) AS w3, CAST(Z.w4 AS float) AS w4, CAST(Z.w5 AS float) AS w5, CAST(Z.b1 AS float) AS b1, CAST(Z.b2 AS float) AS b2, CAST(Z.b3 AS float) AS b3, CAST(Z.b4 AS float) AS b4, CAST(Z.b5 AS float) AS b5, CAST(AVG(Z.gw1) OVER(PARTITION BY Z.iteration) AS float) AS gw1, CAST(AVG(Z.gw2) OVER(PARTITION BY Z.iteration) AS float) AS gw2, CAST(AVG(Z.gw3) OVER(PARTITION BY Z.iteration) AS float) AS gw3, CAST(AVG(Z.gw4) OVER(PARTITION BY Z.iteration) AS float) AS gw4, CAST(AVG(Z.gw5) OVER(PARTITION BY Z.iteration) AS float) AS gw5, CAST(AVG(Z.gb1) OVER(PARTITION BY Z.iteration) AS float) AS gb1, CAST(AVG(Z.gb2) OVER(PARTITION BY Z.iteration) AS float) AS gb2, CAST(AVG(Z.gb3) OVER(PARTITION BY Z.iteration) AS float) AS gb3, CAST(AVG(Z.gb4) OVER(PARTITION BY Z.iteration) AS float) AS gb4, CAST(AVG(z.gb5) OVER(PARTITION BY Z.iteration) AS float) AS gb5, Z.iteration + 1 AS iteration, CAST(AVG(z.squared_distance) OVER(PARTITION BY Z.w1, Z.w2, Z.w3, Z.w4, Z.w5, Z.b1, Z.b2, Z.b3, Z.b4, Z.b5, Z.iteration) AS float) AS mse, Z.dummy AS dummy, ROW_NUMBER() OVER(PARTITION BY Z.dummy ORDER BY Z.dummy) AS row_number FROM ( SELECT X.*, X.distance * x.distance AS squared_distance, X.distance * X.sepal_width AS gw1, X.distance * X.petal_length AS gw2, X.distance * X.petal_width AS gw3, X.distance * X.is_setosa AS gw4, X.distance * X.is_virginica AS gw5, X.distance AS gb1, X.distance AS gb2, X.distance AS gb3, X.distance AS gb4, X.distance AS gb5, 1 as dummy FROM ( SELECT T.*, L.*, (T.sepal_width * L.w1 + L.b1) + (T.petal_length * L.w2 + L.b2) + (T.petal_width * L.w3 + L.b3) + (T.is_setosa * L.w4 + L.b4) + (T.is_virginica * L.w5 + L.b5) - T.sepal_length AS distance FROM training AS T, ( SELECT l.w1 - 0.01 * l.gw1 AS w1, l.w2 - 0.01 * l.gw2 AS w2, l.w3 - 0.01 * l.gw3 AS w3, l.w4 - 0.01 * l.gw4 AS w4, l.w5 - 0.01 * l.gw5 AS w5, l.b1 - 0.01 * l.gb1 AS b1, l.b2 - 0.01 * l.gb2 AS b2, l.b3 - 0.01 * l.gb3 AS b3, l.b4 - 0.01 * l.gb4 AS b4, l.b5 - 0.01 * l.gb5 AS b5, l.iteration, MAX(l.iteration) OVER(PARTITION BY L.dummy) AS max_iteration FROM learning AS L ) AS L WHERE L.iteration = max_iteration AND L.iteration < 100 ) AS X ) AS Z ) AS R WHERE R.row_number = 1 ) SELECT DISTINCT * FROM learning ORDER BY iteration |
Whoa, looks terrible. Let’s go step by step.
First, we get transformed
table with samples in randomized order and two new features. The same as in Python code.
Next, we gat training
and test
tables representing datasets for training and evaluation respectively.
Nest, learning
table. We want to represent the formula where is a matrix of samples, and are vectors of parameters we calculate with linear regression (representing the line), is a vector of target variables. gw#
and bw#
are variables representing gradient, mse
is a mean square error. dummy
is just a variable we need to use in windowing functions since we cannot use grouping.
Next, we go with recursive CTE part. Let’s start from the most nested part.
Our initial learning
values represent some coefficients with gradients calculated in last iteration. We could start with random values as well, here we start with constants. In the innermost view we do the actual training: for every feature we subtract gradient multiplied by learning rate ( here) and this is how we calculate new coefficients. Because of performance issues we also calculate highest iteration available so far.
Next, We join training samples with coefficients and calculate the actual metric. We multiply coefficients by value and finally subtract target variable. Just before that we filter only the last iteration (with WHERE L.iteration = max_iteration
) to decrease the dataset size. We also limit the number of iterations.
Now, we have distance calculated. We calculate squared distance and components for gradient. Since we need to find the derivatives on our own (and we know the result, don’t we?), we multiply distance by features for partial derivatives for and get just a distance for partial derivatives for .
Next, we do a lot of ugly casting to match the CTE requirements of uniform data types. We also calculate averages of gradients for every feature. We divide the dataset for given partitions, actually there is just one iteration, but we need to have some partition for syntax purposes. We could use Z.dummy
as well.
Ultimately, we just get the values for the first row, as all the rows have the same values. We could ignore this filtering but the our dataset would be very big and training would take much longer.
And here are the results of the fiddle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
w1 w2 w3 w4 w5 b1 b2 b3 b4 b5 gw1 gw2 gw3 gw4 gw5 gb1 gb2 gb3 gb4 gb5 iteration mse dummy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 -17.866099999999992 -23.68590000000001 -7.787099999999996 -1.54 -2.298 -5.8580000000000005 -5.8580000000000005 -5.8580000000000005 -5.8580000000000005 -5.8580000000000005 2 34.993599999999994 1 0.17866099999999993 0.23685900000000012 0.07787099999999997 0.0154 0.02298 0.05858000000000001 0.05858000000000001 0.05858000000000001 0.05858000000000001 0.05858000000000001 -12.380883275799999 -15.605772535299998 -5.0526124829 -1.2608740210000005 -1.4953080819999993 -4.007251468 -4.007251468 -4.007251468 -4.007251468 -4.007251468 3 16.27646348154281 1 0.30246983275799993 0.3929167253530001 0.12839712482899995 0.028008740210000008 0.03793308081999999 0.09865251468 0.09865251468 0.09865251468 0.09865251468 0.09865251468 -8.418834585943394 -10.81760488381647 -3.4164139831366573 -0.8216200035865951 -0.9625399001012132 -2.7631314482787417 -2.7631314482787417 -2.7631314482787417 -2.7631314482787417 -2.7631314482787417 4 7.769214971609398 1 0.3866581786174339 0.5010927741911648 0.16256126466036652 0.036224940245865964 0.04755847982101212 0.1262838291627874 0.1262838291627874 0.1262838291627874 0.1262838291627874 0.1262838291627874 -6.035317318894683 -6.606228048514185 -2.023863003680904 -0.8444615479627321 -0.5368810335347928 -1.928314905725471 -1.928314905725471 -1.928314905725471 -1.928314905725471 -1.928314905725471 5 3.90475896095533 1 0.44701135180638074 0.5671550546763067 0.18279989469717556 0.04466955572549328 0.05292729015636005 0.1455669782200421 0.1455669782200421 0.1455669782200421 0.1455669782200421 0.1455669782200421 -4.259932246247001 -4.69904967785691 -1.4272812920919014 -0.5994414351159882 -0.3482019192777488 -1.3810151619909217 -1.3810151619909217 -1.3810151619909217 -1.3810151619909217 -1.3810151619909217 6 2.104835405441499 1 0.48961067426885074 0.6141455514548758 0.19707270761809456 0.050663970076653166 0.05640930934913754 0.15937712983995134 0.15937712983995134 0.15937712983995134 0.15937712983995134 0.15937712983995134 -2.9131502368507523 -2.7900047108941357 -0.786858726083015 -0.4902770512098376 -0.13835673111718788 -0.9360854954297377 -0.9360854954297377 -0.9360854954297377 -0.9360854954297377 -0.9360854954297377 7 1.1812001776943115 1 0.5187421766373582 0.6420455985638172 0.2049412948789247 0.055566740588751544 0.057792876660309425 0.1687379847942487 0.1687379847942487 0.1687379847942487 0.1687379847942487 0.1687379847942487 -2.2815822515924356 -1.8669176720067389 -0.48251503714682115 -0.45540670681884726 -0.061890674774057554 -0.7178696773491847 -0.7178696773491847 -0.7178696773491847 -0.7178696773491847 -0.7178696773491847 8 0.8633620171570588 1 0.5415579991532826 0.6607147752838846 0.20976644525039292 0.060120807656940015 0.05841178340805 0.17591668156774054 0.17591668156774054 0.17591668156774054 0.17591668156774054 0.17591668156774054 -1.5999202323884023 -1.1506719996479482 -0.2718566121871 -0.3411146806640698 0.0033881819862846907 -0.49616500591193463 -0.49616500591193463 -0.49616500591193463 -0.49616500591193463 -0.49616500591193463 9 0.5882617765607544 1 0.5575572014771667 0.672221495280364 0.21248501137226392 0.06353195446358072 0.058377901588187155 0.1808783316268599 0.1808783316268599 0.1808783316268599 0.1808783316268599 0.1808783316268599 -1.4486656783545695 -0.7126912415655796 -0.10067134875629 -0.3912972375425979 0.05674696038537284 -0.43717447937772547 -0.43717447937772547 -0.43717447937772547 -0.43717447937772547 -0.43717447937772547 10 0.5623460089803844 1 0.5720438582607124 0.6793484076960198 0.21349172485982681 0.0674449268390067 0.05781043198433343 0.18525007642063715 0.18525007642063715 0.18525007642063715 0.18525007642063715 0.18525007642063715 -0.9306475612833495 -0.15288151866185962 0.0744573029382314 -0.3115818095388638 0.11786433111911637 -0.2758898465515766 -0.2758898465515766 -0.2758898465515766 -0.2758898465515766 -0.2758898465515766 11 0.47691160165459484 1 0.5813503338735458 0.6808772228826384 0.21274715183044451 0.07056074493439533 0.056631788673142266 0.18800897488615292 0.18800897488615292 0.18800897488615292 0.18800897488615292 0.18800897488615292 -0.7351425771472415 0.07290133335083944 0.15718629093419806 -0.29006779678979683 0.14059860645334357 -0.21346090333136303 -0.21346090333136303 -0.21346090333136303 -0.21346090333136303 -0.21346090333136303 12 0.4716605760544138 1 0.5887017596450183 0.68014820954913 0.21117528892110254 0.07346142290229331 0.05522580260860883 0.19014358391946656 0.19014358391946656 0.19014358391946656 0.19014358391946656 0.19014358391946656 -0.8496869040548067 0.025167947969057334 0.13655829480440038 -0.32553628103124616 0.13687662647187548 -0.24475728986359135 -0.24475728986359135 -0.24475728986359135 -0.24475728986359135 -0.24475728986359135 13 0.4339828812327394 1 0.5971986286855663 0.6798965300694394 0.20980970597305854 0.07671678571260578 0.05385703634389007 0.1925911568181025 0.1925911568181025 0.1925911568181025 0.1925911568181025 0.1925911568181025 -0.7795646413472435 -0.0028445948234325025 0.11892653879067865 -0.2834392136806792 0.12863334072334467 -0.22656991588415598 -0.22656991588415598 -0.22656991588415598 -0.22656991588415598 -0.22656991588415598 14 0.4378123399820016 1 0.6049942750990387 0.6799249760176738 0.20862044058515175 0.07955117784941257 0.052570702936656624 0.19485685597694405 0.19485685597694405 0.19485685597694405 0.19485685597694405 0.19485685597694405 -0.6199022285354157 0.2241419869804357 0.18844403042810082 -0.27631647315104274 0.14659705709607304 -0.17750043058490167 -0.17750043058490167 -0.17750043058490167 -0.17750043058490167 -0.17750043058490167 15 0.4041025964725166 1 0.6111932973843929 0.6776835561478695 0.20673600028087075 0.082314342580923 0.05110473236569589 0.19663186028279306 0.19663186028279306 0.19663186028279306 0.19663186028279306 0.19663186028279306 -0.5982201415162909 0.223020429269901 0.18786410062666778 -0.2778417715564467 0.14219223365502676 -0.16766557583295694 -0.16766557583295694 -0.16766557583295694 -0.16766557583295694 -0.16766557583295694 16 0.37677359384506365 1 0.6171754987995558 0.6754533518551704 0.20485735927460408 0.08509276029648746 0.049682810029145624 0.19830851604112262 0.19830851604112262 0.19830851604112262 0.19830851604112262 0.19830851604112262 -0.504727184910006 0.3488735090236196 0.23169940182123533 -0.27304021389090055 0.15137057707747892 -0.14594812814182823 -0.14594812814182823 -0.14594812814182823 -0.14594812814182823 -0.14594812814182823 17 0.377184784439225 1 0.6222227706486558 0.6719646167649342 0.2025403652563917 0.08782316243539647 0.048169104258370836 0.1997679973225409 0.1997679973225409 0.1997679973225409 0.1997679973225409 0.1997679973225409 -0.44998764800328744 0.2717811698570403 0.18838367144926862 -0.23068727674683934 0.13729583498280745 -0.12885900816583054 -0.12885900816583054 -0.12885900816583054 -0.12885900816583054 -0.12885900816583054 18 0.3358015439419573 1 0.6267226471286887 0.6692468050663638 0.20065652854189903 0.09013003520286486 0.04679614590854276 0.2010565874041992 0.2010565874041992 0.2010565874041992 0.2010565874041992 0.2010565874041992 -0.3327449242778986 0.4218061610425528 0.250603029713697 -0.2186705079506715 0.16399901690035443 -0.09281485221264772 -0.09281485221264772 -0.09281485221264772 -0.09281485221264772 -0.09281485221264772 19 0.3435586135251613 1 0.6300500963714677 0.6650287434559383 0.19815049824476205 0.09231674028237158 0.04515615573953922 0.20198473592632568 0.20198473592632568 0.20198473592632568 0.20198473592632568 0.20198473592632568 -0.3978821591273137 0.37818526431069854 0.22397317697432803 -0.2301645447314299 0.15656659519583066 -0.10520392419282784 -0.10520392419282784 -0.10520392419282784 -0.10520392419282784 -0.10520392419282784 20 0.32909737647738074 1 0.6340289179627409 0.6612468908128314 0.19591076647501876 0.09461838572968588 0.04359048978758091 0.20303677516825397 0.20303677516825397 0.20303677516825397 0.20303677516825397 0.20303677516825397 -0.49501548321294875 0.2824756186489414 0.19154839534497095 -0.2408611483352118 0.13186150356062115 -0.1346065552874162 -0.1346065552874162 -0.1346065552874162 -0.1346065552874162 -0.1346065552874162 21 0.34489232659720287 1 0.6389790727948703 0.658422134626342 0.19399528252156906 0.097026997213038 0.0422718747519747 0.20438284072112814 0.20438284072112814 0.20438284072112814 0.20438284072112814 0.20438284072112814 -0.501011104499183 0.24610496419058692 0.18246922326963586 -0.24294075989110828 0.12900402506295225 -0.1393312449730318 -0.1393312449730318 -0.1393312449730318 -0.1393312449730318 -0.1393312449730318 22 0.3276205502872738 1 0.6439891838398621 0.6559610849844362 0.1921705902888727 0.09945640481194908 0.040981834501345175 0.20577615317085846 0.20577615317085846 0.20577615317085846 0.20577615317085846 0.20577615317085846 -0.324775351310746 0.3746107213205154 0.2111139416712132 -0.20058332957969047 0.13686659765338857 -0.08655469582421822 -0.08655469582421822 -0.08655469582421822 -0.08655469582421822 -0.08655469582421822 23 0.2935346775960134 1 0.6472369373529696 0.652214977771231 0.19005945087216058 0.10146223810774598 0.03961316852481129 0.20664170012910063 0.20664170012910063 0.20664170012910063 0.20664170012910063 0.20664170012910063 -0.4838045379993712 0.1006841330157371 0.10643052467775646 -0.20234130338363415 0.09292148398897694 -0.1354541866632277 -0.1354541866632277 -0.1354541866632277 -0.1354541866632277 -0.1354541866632277 24 0.25669597691151474 1 0.6520749827329633 0.6512081364410737 0.18899514562538303 0.10348565114158231 0.03868395368492152 0.2079962419957329 0.2079962419957329 0.2079962419957329 0.2079962419957329 0.2079962419957329 -0.35575362508485314 0.3141589432080337 0.20155588679506228 -0.20586212623287087 0.137290032171127 -0.10217281513696584 -0.10217281513696584 -0.10217281513696584 -0.10217281513696584 -0.10217281513696584 25 0.28212690272956203 1 0.6556325189838118 0.6480665470089934 0.1869795867574324 0.10554427240391102 0.03731105336321025 0.20901797014710258 0.20901797014710258 0.20901797014710258 0.20901797014710258 0.20901797014710258 -0.3875722593205403 0.39575152037580225 0.2376765951470362 -0.22980463433325074 0.14741462189301477 -0.09721841813781816 -0.09721841813781816 -0.09721841813781816 -0.09721841813781816 -0.09721841813781816 26 0.3275866369928804 1 0.6595082415770173 0.6441090318052354 0.18460282080596205 0.10784231874724354 0.0358369071442801 0.20999015432848075 0.20999015432848075 0.20999015432848075 0.20999015432848075 0.20999015432848075 -0.38666612411329326 0.30298380325383223 0.18544748254748933 -0.2109305062431924 0.1207459374420806 -0.10279820476131978 -0.10279820476131978 -0.10279820476131978 -0.10279820476131978 -0.10279820476131978 27 0.28304267674482325 1 0.6633749028181501 0.6410791937726971 0.18274834598048714 0.10995162380967546 0.034629447769859295 0.21101813637609396 0.21101813637609396 0.21101813637609396 0.21101813637609396 0.21101813637609396 -0.24847682120208867 0.3094963979968232 0.18946065318285155 -0.16684214138339748 0.12473991223078539 -0.07595889935143632 -0.07595889935143632 -0.07595889935143632 -0.07595889935143632 -0.07595889935143632 28 0.246960439850011 1 0.6658596710301711 0.6379842297927288 0.18085373944865862 0.11162004522350943 0.03338204864755144 0.21177772536960832 0.21177772536960832 0.21177772536960832 0.21177772536960832 0.21177772536960832 -0.26713664218284927 0.36465094054170605 0.21039792537887425 -0.18595615618522174 0.12832303993252667 -0.0712989816305829 -0.0712989816305829 -0.0712989816305829 -0.0712989816305829 -0.0712989816305829 29 0.24185518216726717 1 0.6685310374519996 0.6343377203873117 0.17874976019486988 0.11347960678536165 0.03209881824822618 0.21249071518591414 0.21249071518591414 0.21249071518591414 0.21249071518591414 0.21249071518591414 -0.285372851000564 0.3905166535024734 0.2273788959907782 -0.1908825686291652 0.14691956832436104 -0.07806912091024437 -0.07806912091024437 -0.07806912091024437 -0.07806912091024437 -0.07806912091024437 30 0.28331571855985055 1 0.6713847659620052 0.630432553852287 0.1764759712349621 0.1153884324716533 0.030629622564982566 0.21327140639501657 0.21327140639501657 0.21327140639501657 0.21327140639501657 0.21327140639501657 -0.28485721231197203 0.30590558562656417 0.19669736501813603 -0.17821444469252792 0.1307925544131432 -0.08172656365838715 -0.08172656365838715 -0.08172656365838715 -0.08172656365838715 -0.08172656365838715 31 0.2785500859852849 1 0.674233338085125 0.6273734979960214 0.17450899758478072 0.11717057691857857 0.029321697020851134 0.21408867203160045 0.21408867203160045 0.21408867203160045 0.21408867203160045 0.21408867203160045 -0.5129761189347142 -0.020461479708326444 0.07474153979340704 -0.19273808445220872 0.08150043014763933 -0.15869989140145196 -0.15869989140145196 -0.15869989140145196 -0.15869989140145196 -0.15869989140145196 32 0.2402129621304276 1 0.6793630992744721 0.6275781127931046 0.17376158218684665 0.11909795776310066 0.02850669271937474 0.21567567094561496 0.21567567094561496 0.21567567094561496 0.21567567094561496 0.21567567094561496 -0.3645442663637262 0.16150327033185932 0.13174406832208205 -0.16820261994603983 0.1031770297602549 -0.10040680977537035 -0.10040680977537035 -0.10040680977537035 -0.10040680977537035 -0.10040680977537035 33 0.20801326313092441 1 0.6830085419381094 0.625963080089786 0.17244414150362583 0.12077998396256105 0.027474922421772192 0.21667973904336865 0.21667973904336865 0.21667973904336865 0.21667973904336865 0.21667973904336865 -0.16005878697371478 0.4342485263778689 0.23041246929945536 -0.1625295605496381 0.12296231586278182 -0.04583500123245548 -0.04583500123245548 -0.04583500123245548 -0.04583500123245548 -0.04583500123245548 34 0.24620358056538802 1 0.6846091298078466 0.6216205948260073 0.1701400168106313 0.12240527956805744 0.026245299263144374 0.2171380890556932 0.2171380890556932 0.2171380890556932 0.2171380890556932 0.2171380890556932 -0.41601032764657925 0.11475000070103901 0.11587338094101118 -0.18685988461561295 0.0887760397414091 -0.11831151476938896 -0.11831151476938896 -0.11831151476938896 -0.11831151476938896 -0.11831151476938896 35 0.23356966469422705 1 0.6887692330843124 0.6204730948189969 0.16898128300122117 0.12427387841421357 0.02535753886573028 0.2183212042033871 0.2183212042033871 0.2183212042033871 0.2183212042033871 0.2183212042033871 -0.2785437161017364 0.3233998047974474 0.18920131636751455 -0.18286457427062713 0.11775577342967697 -0.0764754557323482 -0.0764754557323482 -0.0764754557323482 -0.0764754557323482 -0.0764754557323482 36 0.24040606051671987 1 0.6915546702453297 0.6172390967710224 0.16708926983754602 0.12610252415691983 0.024179981131433513 0.21908595876071058 0.21908595876071058 0.21908595876071058 0.21908595876071058 0.21908595876071058 -0.22878912220235262 0.34081474260147404 0.20446731002501103 -0.16554152172856654 0.12462164430370101 -0.06870368708650554 -0.06870368708650554 -0.06870368708650554 -0.06870368708650554 -0.06870368708650554 37 0.2591299535666149 1 0.6938425614673532 0.6138309493450077 0.1650445967372959 0.1277579393742055 0.022933764688396502 0.21977299563157562 0.21977299563157562 0.21977299563157562 0.21977299563157562 0.21977299563157562 -0.2365525548720244 0.19374497966192147 0.15472041810991788 -0.14106522179189995 0.11214128223363509 -0.07543948357823392 -0.07543948357823392 -0.07543948357823392 -0.07543948357823392 -0.07543948357823392 38 0.21101976832048863 1 0.6962080870160735 0.6118934995483885 0.16349739255619672 0.1291685915921245 0.02181235186606015 0.22052739046735798 0.22052739046735798 0.22052739046735798 0.22052739046735798 0.22052739046735798 -0.24388468328031931 0.22846748194350855 0.15135068447016434 -0.13594214266327828 0.10725768425018055 -0.06449821320142851 -0.06449821320142851 -0.06449821320142851 -0.06449821320142851 -0.06449821320142851 39 0.1976078850328914 1 0.6986469338488767 0.6096088247289534 0.16198388571149508 0.13052801301875727 0.020739775023558345 0.22117237259937225 0.22117237259937225 0.22117237259937225 0.22117237259937225 0.22117237259937225 -0.33139653494040894 0.21233479979061756 0.15611986380630455 -0.1776685173153882 0.1016600568301543 -0.09823540572578526 -0.09823540572578526 -0.09823540572578526 -0.09823540572578526 -0.09823540572578526 40 0.2119873530999341 1 0.7019608991982808 0.6074854767310472 0.16042268707343205 0.13230469819191115 0.0197231744552568 0.2221547266566301 0.2221547266566301 0.2221547266566301 0.2221547266566301 0.2221547266566301 -0.1820100756511364 0.3385437748726924 0.1895384437749324 -0.14677758015871256 0.11365139288940825 -0.04657451528497105 -0.04657451528497105 -0.04657451528497105 -0.04657451528497105 -0.04657451528497105 41 0.21098584005326665 1 0.7037809999547922 0.6041000389823203 0.1585273026356827 0.1337724739934983 0.01858666052636272 0.22262047180947983 0.22262047180947983 0.22262047180947983 0.22262047180947983 0.22262047180947983 -0.24014841963522296 0.247211257489466 0.1577555298296247 -0.14619268030256632 0.0929074227806532 -0.06841922501316199 -0.06841922501316199 -0.06841922501316199 -0.06841922501316199 -0.06841922501316199 42 0.1907255411266933 1 0.7061824841511444 0.6016279264074257 0.15694974733738645 0.13523440079652396 0.017657586298556186 0.22330466405961144 0.22330466405961144 0.22330466405961144 0.22330466405961144 0.22330466405961144 -0.16124098721985047 0.33210451867969654 0.18635267245402815 -0.14390401892582097 0.10331979261932978 -0.045951929828262045 -0.045951929828262045 -0.045951929828262045 -0.045951929828262045 -0.045951929828262045 43 0.2026762296511086 1 0.7077948940233428 0.5983068812206287 0.15508622061284616 0.13667344098578219 0.016624388372362887 0.22376418335789405 0.22376418335789405 0.22376418335789405 0.22376418335789405 0.22376418335789405 -0.26076824328866843 0.1079584865588379 0.09819151125046531 -0.12024340228460798 0.09233343337573185 -0.07922248754202584 -0.07922248754202584 -0.07922248754202584 -0.07922248754202584 -0.07922248754202584 44 0.18878720771229177 1 0.7104025764562295 0.5972272963550403 0.15410430550034152 0.13787587500862827 0.01570105403860557 0.22455640823331433 0.22455640823331433 0.22455640823331433 0.22455640823331433 0.22455640823331433 -0.17740718061463628 0.22014674324259673 0.1362254765522256 -0.11907598110044319 0.0918081731169333 -0.05258883358242868 -0.05258883358242868 -0.05258883358242868 -0.05258883358242868 -0.05258883358242868 45 0.17577173056129552 1 0.7121766482623759 0.5950258289226144 0.15274205073481925 0.13906663481963272 0.014782972307436236 0.2250822965691386 0.2250822965691386 0.2250822965691386 0.2250822965691386 0.2250822965691386 -0.17988621609542654 0.2806248857396519 0.16684906001955507 -0.13179877335974524 0.11636925597792469 -0.0546258399629982 -0.0546258399629982 -0.0546258399629982 -0.0546258399629982 -0.0546258399629982 46 0.1981644076210309 1 0.7139755104233302 0.5922195800652178 0.1510735601346237 0.14038462255323017 0.01361927974765699 0.2256285549687686 0.2256285549687686 0.2256285549687686 0.2256285549687686 0.2256285549687686 -0.2584227412524325 0.10067043498952959 0.09950617905851229 -0.12221606979845091 0.07900578792054862 -0.07504610852125593 -0.07504610852125593 -0.07504610852125593 -0.07504610852125593 -0.07504610852125593 47 0.17812710443683283 1 0.7165597378358545 0.5912128757153226 0.15007849834403858 0.14160678325121467 0.012829221868451503 0.22637901605398117 0.22637901605398117 0.22637901605398117 0.22637901605398117 0.22637901605398117 -0.22804415541398007 0.23192581929406977 0.16116113538750568 -0.13938740548221923 0.10589767726938647 -0.06233184369892504 -0.06233184369892504 -0.06233184369892504 -0.06233184369892504 -0.06233184369892504 48 0.20346020018740268 1 0.7188401793899942 0.5888936175223819 0.14846688699016353 0.14300065730603687 0.011770245095757638 0.22700233449097043 0.22700233449097043 0.22700233449097043 0.22700233449097043 0.22700233449097043 -0.26365809483682423 0.0798335159629457 0.10408220872868917 -0.12185364491356804 0.08895869156554267 -0.08330394668375415 -0.08330394668375415 -0.08330394668375415 -0.08330394668375415 -0.08330394668375415 49 0.20362719044891814 1 0.7214767603383625 0.5880952823627524 0.14742606490287663 0.14421919375517256 0.010880658180102212 0.22783537395780798 0.22783537395780798 0.22783537395780798 0.22783537395780798 0.22783537395780798 -0.12070713376803383 0.19327870847710976 0.1327363086814136 -0.09172258738844023 0.10350211081461654 -0.04023221007679314 -0.04023221007679314 -0.04023221007679314 -0.04023221007679314 -0.04023221007679314 50 0.17307091982205539 1 0.7226838316760429 0.5861624952779814 0.1460987018160625 0.14513641962905696 0.009845637071956046 0.2282376960585759 0.2282376960585759 0.2282376960585759 0.2282376960585759 0.2282376960585759 -0.15208272219677954 0.36597879356450186 0.201455586587483 -0.14214553955958847 0.11307259585551618 -0.04113035316340337 -0.04113035316340337 -0.04113035316340337 -0.04113035316340337 -0.04113035316340337 51 0.20510799671368793 1 0.7242046588980107 0.5825027073423363 0.14408414595018768 0.14655787502465284 0.008714911113400885 0.22864899959020996 0.22864899959020996 0.22864899959020996 0.22864899959020996 0.22864899959020996 -0.23546368590662695 0.07863444953185318 0.08998641352883109 -0.11249190149937331 0.0754169796131565 -0.07477214861370918 -0.07477214861370918 -0.07477214861370918 -0.07477214861370918 -0.07477214861370918 52 0.16452781662027022 1 0.7265592957570769 0.5817163628470178 0.14318428181489937 0.14768279403964657 0.007960741317269319 0.22939672107634704 0.22939672107634704 0.22939672107634704 0.22939672107634704 0.22939672107634704 -0.22412747127965854 0.048052278123844744 0.0775914843586476 -0.10227680547335986 0.06254776208605048 -0.07319435972676704 -0.07319435972676704 -0.07319435972676704 -0.07319435972676704 -0.07319435972676704 53 0.14017649291733109 1 0.7288005704698735 0.5812358400657793 0.1424083669713129 0.14870556209438016 0.007335263696408814 0.2301286646736147 0.2301286646736147 0.2301286646736147 0.2301286646736147 0.2301286646736147 -0.25624041560747846 0.029390761535552937 0.06828636833776426 -0.10898589105571262 0.07017707601687669 -0.0791487536477615 -0.0791487536477615 -0.0791487536477615 -0.0791487536477615 -0.0791487536477615 54 0.14970429593083914 1 0.7313629746259482 0.5809419324504238 0.14172550328793526 0.14979542100493728 0.006633492936240047 0.23092015221009232 0.23092015221009232 0.23092015221009232 0.23092015221009232 0.23092015221009232 -0.22913911184216446 0.13226417066134594 0.11863807691589294 -0.12507494662909818 0.08910521429375504 -0.07101960353629404 -0.07101960353629404 -0.07101960353629404 -0.07101960353629404 -0.07101960353629404 55 0.18622134861905248 1 0.7336543657443699 0.5796192907438104 0.14053912251877634 0.15104617047122826 0.005742440793302496 0.23163034824545525 0.23163034824545525 0.23163034824545525 0.23163034824545525 0.23163034824545525 -0.09998887300596754 0.28464046462850695 0.16586450497279256 -0.1004024281651072 0.09738975422044112 -0.02962061506449232 -0.02962061506449232 -0.02962061506449232 -0.02962061506449232 -0.02962061506449232 56 0.16501636741652853 1 0.7346542544744296 0.5767728860975253 0.1388804774690484 0.15205019475287934 0.004768543251098085 0.2319265543961002 0.2319265543961002 0.2319265543961002 0.2319265543961002 0.2319265543961002 -0.19611257838146476 0.07306489202052129 0.0839723571585399 -0.09336818629413685 0.07303650082337178 -0.062142889850532394 -0.062142889850532394 -0.062142889850532394 -0.062142889850532394 -0.062142889850532394 57 0.16714329194422128 1 0.7366153802582442 0.5760422371773201 0.138040753897463 0.15298387661582072 0.004038178242864367 0.23254798329460552 0.23254798329460552 0.23254798329460552 0.23254798329460552 0.23254798329460552 -0.22363147525512367 -0.0024376351496950654 0.052456962471046274 -0.09354886698006908 0.06150269888035172 -0.07397019068577668 -0.07397019068577668 -0.07397019068577668 -0.07397019068577668 -0.07397019068577668 58 0.1568818655691469 1 0.7388516950107955 0.576066613528817 0.13751618427275256 0.15391936528562142 0.00342315125406085 0.23328768520146329 0.23328768520146329 0.23328768520146329 0.23328768520146329 0.23328768520146329 -0.08953988837717489 0.19607299980858844 0.12001900614550602 -0.07744170356369351 0.07989846080456761 -0.02776372627805278 -0.02776372627805278 -0.02776372627805278 -0.02776372627805278 -0.02776372627805278 59 0.15146671249226407 1 0.7397470938945673 0.5741058835307312 0.1363159942112975 0.15469378232125836 0.002624166646015174 0.2335653224642438 0.2335653224642438 0.2335653224642438 0.2335653224642438 0.2335653224642438 -0.10934864957790269 0.15525500702030612 0.1133993364010108 -0.079016224469531 0.08861978417259017 -0.041351412806578634 -0.041351412806578634 -0.041351412806578634 -0.041351412806578634 -0.041351412806578634 60 0.1510732057321453 1 0.7408405803903463 0.5725533334605282 0.1351820008472874 0.15548394456595366 0.0017379688042892722 0.23397883659230959 0.23397883659230959 0.23397883659230959 0.23397883659230959 0.23397883659230959 -0.2160275996543884 0.11691690812699129 0.10078229606147529 -0.1096247693793104 0.08362684381319943 -0.06698467735528844 -0.06698467735528844 -0.06698467735528844 -0.06698467735528844 -0.06698467735528844 61 0.17161510513564956 1 0.7430008563868902 0.5713841643792582 0.13417417788667266 0.15658019225974676 0.0009017003661572779 0.23464868336586248 0.23464868336586248 0.23464868336586248 0.23464868336586248 0.23464868336586248 -0.055536840564336075 0.31286777483113964 0.17508517551052347 -0.0959580020511796 0.10970668633538562 -0.019674767901056676 -0.019674767901056676 -0.019674767901056676 -0.019674767901056676 -0.019674767901056676 62 0.1752640440036056 1 0.7435562247925336 0.5682554866309468 0.13242332613156743 0.15753977228025856 -0.00019536649719657827 0.23484543104487304 0.23484543104487304 0.23484543104487304 0.23484543104487304 0.23484543104487304 -0.18244391053238806 0.07504035522087159 0.08444011577478755 -0.08784467564824183 0.07069882358929407 -0.057543812056915555 -0.057543812056915555 -0.057543812056915555 -0.057543812056915555 -0.057543812056915555 63 0.14813242245230082 1 0.7453806638978575 0.5675050830787381 0.13157892497381957 0.15841821903674097 -0.000902354733089519 0.2354208691654422 0.2354208691654422 0.2354208691654422 0.2354208691654422 0.2354208691654422 -0.09810495103647211 0.21942831404466884 0.12957345616493116 -0.08822113899863321 0.07607507223736298 -0.02574705261269635 -0.02574705261269635 -0.02574705261269635 -0.02574705261269635 -0.02574705261269635 64 0.14548512205790703 1 0.7463617134082222 0.5653107999382915 0.13028319041217026 0.1593004304267273 -0.0016631054554631488 0.23567833969156915 0.23567833969156915 0.23567833969156915 0.23567833969156915 0.23567833969156915 -0.32812328713649097 -0.14080925333981334 0.010850431329594932 -0.10260966746205227 0.05049462621900181 -0.11064259443801606 -0.11064259443801606 -0.11064259443801606 -0.11064259443801606 -0.11064259443801606 65 0.16076785344633143 1 0.7496429462795872 0.5667188924716896 0.1301746860988743 0.16032652710134784 -0.0021680517176531668 0.2367847656359493 0.2367847656359493 0.2367847656359493 0.2367847656359493 0.2367847656359493 -0.1979877928574162 0.04136037632766339 0.06919498812733316 -0.0953543502035378 0.06001726142107431 -0.06606925753376086 -0.06606925753376086 -0.06606925753376086 -0.06606925753376086 -0.06606925753376086 66 0.1540183055576599 1 0.7516228242081613 0.566305288708413 0.12948273621760098 0.16128007060338323 -0.0027682243318639097 0.2374454582112869 0.2374454582112869 0.2374454582112869 0.2374454582112869 0.2374454582112869 -0.08920006127166223 0.19791213757769224 0.11667310986796635 -0.08501533410229058 0.0714916421354736 -0.026501943724348456 -0.026501943724348456 -0.026501943724348456 -0.026501943724348456 -0.026501943724348456 67 0.14287594000870538 1 0.752514824820878 0.5643261673326361 0.12831600511892133 0.16213022394440613 -0.003483140753218646 0.2377104776485304 0.2377104776485304 0.2377104776485304 0.2377104776485304 0.2377104776485304 0.01905716157834171 0.3048941600109156 0.15246005973911841 -0.06397268858760383 0.08826052003745843 0.004439930870313775 0.004439930870313775 0.004439930870313775 0.004439930870313775 0.004439930870313775 68 0.14354684658906344 1 0.7523242532050946 0.5612772257325269 0.12679140452153015 0.16276995083028217 -0.00436574595359323 0.23766607833982725 0.23766607833982725 0.23766607833982725 0.23766607833982725 0.23766607833982725 -0.12454143429966495 0.08808459085958564 0.08611866524566845 -0.0756576129359348 0.07663404484811812 -0.046410981816632 -0.046410981816632 -0.046410981816632 -0.046410981816632 -0.046410981816632 69 0.1552713068383162 1 0.7535696675480912 0.5603963798239311 0.12593021786907346 0.1635265269596415 -0.005132086402074411 0.23813018815799358 0.23813018815799358 0.23813018815799358 0.23813018815799358 0.23813018815799358 -0.14121596124163496 0.06456803442600145 0.07155879643214269 -0.07373620627454074 0.06202810952350835 -0.04698016250964484 -0.04698016250964484 -0.04698016250964484 -0.04698016250964484 -0.04698016250964484 70 0.13120812533515577 1 0.7549818271605075 0.559750699479671 0.12521462990475205 0.16426388902238692 -0.005752367497309495 0.23859998978309002 0.23859998978309002 0.23859998978309002 0.23859998978309002 0.23859998978309002 -0.04107865859575949 0.17660052977850144 0.1173143825892387 -0.060542654804122 0.07215316852100737 -0.014136748077008078 -0.014136748077008078 -0.014136748077008078 -0.014136748077008078 -0.014136748077008078 71 0.1504912691420637 1 0.7553926137464652 0.557984694181886 0.12404148607885966 0.16486931557042814 -0.006473899182519569 0.23874135726386012 0.23874135726386012 0.23874135726386012 0.23874135726386012 0.23874135726386012 -0.18856706766651427 0.003499916117622832 0.05590851270829903 -0.0772715012971761 0.06349906696270137 -0.06627499595695469 -0.06627499595695469 -0.06627499595695469 -0.06627499595695469 -0.06627499595695469 72 0.15533830139959728 1 0.7572782844231303 0.5579496950207098 0.12348240095177668 0.1656420305833999 -0.007108889852146583 0.23940410722342967 0.23940410722342967 0.23940410722342967 0.23940410722342967 0.23940410722342967 -0.22750105830278453 -0.05423550300058153 0.03548031707478287 -0.08248403931937454 0.04950287068564042 -0.07735624258596711 -0.07735624258596711 -0.07735624258596711 -0.07735624258596711 -0.07735624258596711 73 0.1467113877863856 1 0.7595532950061581 0.5584920500507156 0.12312759778102884 0.16646687097659366 -0.007603918559002987 0.24017766964928933 0.24017766964928933 0.24017766964928933 0.24017766964928933 0.24017766964928933 -0.10512526149587802 0.09710354354836108 0.0764814073253542 -0.062317819415637035 0.064312522127424 -0.03415974583314118 -0.03415974583314118 -0.03415974583314118 -0.03415974583314118 -0.03415974583314118 74 0.12477147666327537 1 0.7606045476211168 0.557521014615232 0.1223627837077753 0.16709004917075002 -0.008247043780277227 0.24051926710762073 0.24051926710762073 0.24051926710762073 0.24051926710762073 0.24051926710762073 -0.1312889166516503 0.043072316463475493 0.06466703346740718 -0.06822191816703964 0.0644501410408365 -0.048748283322623286 -0.048748283322623286 -0.048748283322623286 -0.048748283322623286 -0.048748283322623286 75 0.139848343937992 1 0.7619174367876334 0.5570902914505972 0.12171611337310123 0.1677722683524204 -0.008891545190685593 0.24100674994084695 0.24100674994084695 0.24100674994084695 0.24100674994084695 0.24100674994084695 0.05608208253031271 0.3332334320911999 0.16612740246198984 -0.05842284436754449 0.08401380854343107 0.016064210179425747 0.016064210179425747 0.016064210179425747 0.016064210179425747 0.016064210179425747 76 0.1439294009963182 1 0.7613566159623302 0.5537579571296852 0.12005483934848134 0.16835649679609585 -0.009731683276119904 0.2408461078390527 0.2408461078390527 0.2408461078390527 0.2408461078390527 0.2408461078390527 -0.1444919742242204 0.05212588366251118 0.0757039417929166 -0.0709897148297897 0.06129848216074554 -0.05281231904163748 -0.05281231904163748 -0.05281231904163748 -0.05281231904163748 -0.05281231904163748 77 0.14755249301554693 1 0.7628015357045724 0.5532366982930601 0.11929779993055217 0.16906639394439374 -0.01034466809772736 0.24137423102946906 0.24137423102946906 0.24137423102946906 0.24137423102946906 0.24137423102946906 -0.08210801404100974 0.0651040977250028 0.06013389048457362 -0.05381548528687653 0.05599204646535418 -0.03137487372005904 -0.03137487372005904 -0.03137487372005904 -0.03137487372005904 -0.03137487372005904 78 0.12778180880043968 1 0.7636226158449825 0.5525856573158101 0.11869646102570644 0.1696045487972625 -0.010904588562380902 0.24168797976666964 0.24168797976666964 0.24168797976666964 0.24168797976666964 0.24168797976666964 0.04244081758396698 0.2869107655779289 0.14777111986448882 -0.048953794555473884 0.09078126424653137 0.011781732644253298 0.011781732644253298 0.011781732644253298 0.011781732644253298 0.011781732644253298 79 0.14254292725697765 1 0.7631982076691428 0.5497165496600308 0.11721874982706156 0.17009408674281723 -0.011812401204846217 0.2415701624402271 0.2415701624402271 0.2415701624402271 0.2415701624402271 0.2415701624402271 -0.15486226059221975 0.0536218177160101 0.08320641094516558 -0.07734953852493864 0.07291625238903855 -0.054606701182151475 -0.054606701182151475 -0.054606701182151475 -0.054606701182151475 -0.054606701182151475 80 0.15134168925096764 1 0.764746830275065 0.5491803314828707 0.1163866857176099 0.1708675821280666 -0.012541563728736603 0.24211622945204864 0.24211622945204864 0.24211622945204864 0.24211622945204864 0.24211622945204864 -0.07666026528371934 0.08965244539838306 0.07969940256955325 -0.056744964738265076 0.05740035259615096 -0.02969818755109547 -0.02969818755109547 -0.02969818755109547 -0.02969818755109547 -0.02969818755109547 81 0.12497887736713718 1 0.7655134329279022 0.5482838070288869 0.11558969169191437 0.17143503177544925 -0.013115567254698111 0.24241321132755958 0.24241321132755958 0.24241321132755958 0.24241321132755958 0.24241321132755958 -0.1955624427970849 -0.1490763449540694 -0.005952343631955764 -0.04892586145794186 0.036323511504754685 -0.0713828999909823 -0.0713828999909823 -0.0713828999909823 -0.0713828999909823 -0.0713828999909823 82 0.1308424008423824 1 0.767469057355873 0.5497745704784276 0.11564921512823392 0.17192429039002866 -0.013478802369745657 0.2431270403274694 0.2431270403274694 0.2431270403274694 0.2431270403274694 0.2431270403274694 -0.07958764279476577 -0.02787911452614944 0.020861408995979117 -0.03534351779308108 0.033310314330203886 -0.03357450313536812 -0.03357450313536812 -0.03357450313536812 -0.03357450313536812 -0.03357450313536812 83 0.10959137096965264 1 0.7682649337838207 0.5500533616236891 0.11544060103827414 0.17227772556795948 -0.013811905513047696 0.24346278535882307 0.24346278535882307 0.24346278535882307 0.24346278535882307 0.24346278535882307 -0.10697400824212892 0.0005825758405553483 0.036658693836451546 -0.04760596259891188 0.042994003382070184 -0.039010095579500075 -0.039010095579500075 -0.039010095579500075 -0.039010095579500075 -0.039010095579500075 84 0.12988951457702805 1 0.769334673866242 0.5500475358652835 0.11507401409990962 0.1727537851939486 -0.014241845546868397 0.24385288631461807 0.24385288631461807 0.24385288631461807 0.24385288631461807 0.24385288631461807 -0.16818210932614797 -0.05800927001748076 0.023743373104544156 -0.06003821194789818 0.03987184518080429 -0.05934805135985457 -0.05934805135985457 -0.05934805135985457 -0.05934805135985457 -0.05934805135985457 85 0.12130372159084488 1 0.7710164949595034 0.5506276285654583 0.11483658036886418 0.1733541673134276 -0.01464056399867644 0.2444463668282166 0.2444463668282166 0.2444463668282166 0.2444463668282166 0.2444463668282166 0.08977679614187536 0.2757420815255268 0.14310472026978727 -0.03784614043050057 0.08319118404603752 0.020958453855994943 0.020958453855994943 0.020958453855994943 0.020958453855994943 0.020958453855994943 86 0.13311264087386843 1 0.7701187269980847 0.547870207750203 0.1134055331661663 0.1737326287177326 -0.015472475839136815 0.24423678228965665 0.24423678228965665 0.24423678228965665 0.24423678228965665 0.24423678228965665 -0.01020537860094696 0.18597865909212818 0.10807216653184656 -0.04405159118881292 0.0760369607846935 -0.0058501303198060664 -0.0058501303198060664 -0.0058501303198060664 -0.0058501303198060664 -0.0058501303198060664 87 0.13400454338996654 1 0.7702207807840942 0.5460104211592818 0.11232481150084785 0.17417314462962072 -0.01623284544698375 0.2442952835928547 0.2442952835928547 0.2442952835928547 0.2442952835928547 0.2442952835928547 0.009841974683875019 0.2543513898421049 0.13829510046539067 -0.06201639569073605 0.07077867639799883 0.0024863556241352127 0.0024863556241352127 0.0024863556241352127 0.0024863556241352127 0.0024863556241352127 88 0.1386872357874715 1 0.7701223610372554 0.5434669072608608 0.11094186049619394 0.17479330858652808 -0.01694063221096374 0.24427042003661337 0.24427042003661337 0.24427042003661337 0.24427042003661337 0.24427042003661337 -0.18770427314422566 -0.11783529327564121 0.004345102911476412 -0.04901970381455122 0.032903348126294966 -0.06577320591135308 -0.06577320591135308 -0.06577320591135308 -0.06577320591135308 -0.06577320591135308 89 0.1231833502421304 1 0.7719994037686977 0.5446452601936171 0.11089840946707917 0.1752835056246736 -0.01726966569222669 0.2449281520957269 0.2449281520957269 0.2449281520957269 0.2449281520957269 0.2449281520957269 -0.10777513643651629 -0.02946688859150442 0.0358105315654737 -0.041458818753371436 0.049801760690163246 -0.0430904153575444 -0.0430904153575444 -0.0430904153575444 -0.0430904153575444 -0.0430904153575444 90 0.14234524490869968 1 0.7730771551330629 0.5449399290795321 0.11054030415142443 0.1756980938122073 -0.017767683299128322 0.24535905624930235 0.24535905624930235 0.24535905624930235 0.24535905624930235 0.24535905624930235 -0.03029478545601165 0.12063189104715981 0.0926271105306644 -0.04494968801482946 0.06225696531422806 -0.017560619020668335 -0.017560619020668335 -0.017560619020668335 -0.017560619020668335 -0.017560619020668335 91 0.1457493115440951 1 0.7733801029876229 0.5437336101690605 0.10961403304611779 0.17614759069235558 -0.018390252952270602 0.24553466243950903 0.24553466243950903 0.24553466243950903 0.24553466243950903 0.24553466243950903 -0.06523603548853846 0.09667365400886294 0.0713368152859959 -0.049380507728132364 0.05282451252486076 -0.028140412239059866 -0.028140412239059866 -0.028140412239059866 -0.028140412239059866 -0.028140412239059866 92 0.11709471026673818 1 0.7740324633425083 0.5427668736289719 0.10890066489325784 0.17664139576963692 -0.01891849807751921 0.24581606656189964 0.24581606656189964 0.24581606656189964 0.24581606656189964 0.24581606656189964 -0.08166418125447414 0.011620192693396562 0.04235739894196954 -0.04497095901436263 0.032569707128320594 -0.028603080067397365 -0.028603080067397365 -0.028603080067397365 -0.028603080067397365 -0.028603080067397365 93 0.12100758485735008 1 0.774849105155053 0.542650671702038 0.10847709090383814 0.17709110535978054 -0.019244195148802413 0.2461020973625736 0.2461020973625736 0.2461020973625736 0.2461020973625736 0.2461020973625736 -0.054049878408753055 0.09529952496794664 0.07496089108022766 -0.051295296110918515 0.053311038307389834 -0.022739074718073474 -0.022739074718073474 -0.022739074718073474 -0.022739074718073474 -0.022739074718073474 94 0.14030289681359853 1 0.7753896039391406 0.5416976764523584 0.10772748199303586 0.1776040583208897 -0.019777305531876312 0.24632948810975433 0.24632948810975433 0.24632948810975433 0.24632948810975433 0.24632948810975433 -0.004634836658378023 0.11994905030666918 0.0796069470946916 -0.03872300046315407 0.05500233694519574 -0.00908898025347773 -0.00908898025347773 -0.00908898025347773 -0.00908898025347773 -0.00908898025347773 95 0.13482222346592368 1 0.7754359523057244 0.5404981859492918 0.10693141252208894 0.17799128832552125 -0.02032732890132827 0.2464203779122891 0.2464203779122891 0.2464203779122891 0.2464203779122891 0.2464203779122891 0.0019463231711243912 0.09639414315953916 0.07592558455146892 -0.02516854515566532 0.06450413358614304 -0.00854093627988571 -0.00854093627988571 -0.00854093627988571 -0.00854093627988571 -0.00854093627988571 96 0.11817866295073942 1 0.7754164890740132 0.5395342445176964 0.10617215667657426 0.1782429737770779 -0.020972370237189703 0.24650578727508796 0.24650578727508796 0.24650578727508796 0.24650578727508796 0.24650578727508796 -0.09513208220936142 0.048799027507884826 0.06116810689537701 -0.04946169106847582 0.056547844377849064 -0.034589467035792396 -0.034589467035792396 -0.034589467035792396 -0.034589467035792396 -0.034589467035792396 97 0.1280206781422752 1 0.7763678098961068 0.5390462542426175 0.10556047560762048 0.17873759068776265 -0.021537848680968193 0.24685168194544588 0.24685168194544588 0.24685168194544588 0.24685168194544588 0.24685168194544588 0.021823360536357136 0.24381010531203992 0.13430132877809084 -0.0542497680525091 0.06769974962677341 0.0017672575722143958 0.0017672575722143958 0.0017672575722143958 0.0017672575722143958 0.0017672575722143958 98 0.12127154804897983 1 0.7761495762907432 0.5366081531894972 0.10421746231983957 0.17928008836828774 -0.022214846177235927 0.24683400936972374 0.24683400936972374 0.24683400936972374 0.24683400936972374 0.24683400936972374 -0.01971157818123563 0.13430145878528907 0.0901747839551022 -0.04185287529821893 0.05974885555957459 -0.010383945054739047 -0.010383945054739047 -0.010383945054739047 -0.010383945054739047 -0.010383945054739047 99 0.124218103071711 1 0.7763466920725556 0.5352651386016443 0.10331571448028855 0.17969861712126992 -0.022812334732831674 0.24693784882027114 0.24693784882027114 0.24693784882027114 0.24693784882027114 0.24693784882027114 -0.12080450395174498 -0.008428871457682084 0.042768930169876214 -0.0453162870866954 0.05141831036282574 -0.04464964907170844 -0.04464964907170844 -0.04464964907170844 -0.04464964907170844 -0.04464964907170844 100 0.12942311376115329 1 |
You can evaluate the dataset now.
This query works but has a lot of drawback. In next parts we will try to fix some of them.