.NET – Random IT Utensils https://blog.adamfurmanek.pl IT, operating systems, maths, and more. Sat, 02 Jul 2022 08:57:01 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Async Wandering Part 14 — Async with Fibers reimplemented in .NET Core https://blog.adamfurmanek.pl/2022/07/02/async-wandering-part-14/ https://blog.adamfurmanek.pl/2022/07/02/async-wandering-part-14/#respond Sat, 02 Jul 2022 08:00:21 +0000 https://blog.adamfurmanek.pl/?p=4544 Continue reading Async Wandering Part 14 — Async with Fibers reimplemented in .NET Core]]>

This is the fourteenth part of the Async Wandering series. For your convenience you can find other parts in the table of contents in Part 1 – Why creating Form from WinForms in unit tests breaks async?

We already implemented Loom in C# with Fibers. This time, a piece of code which uses P/Invoke (instead of C++/CLI) and works in .NET 5 (on Windows).

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Threading;

namespace AsyncWithFibers
{
    class Program
    {
        static void Main(string[] args)
        {
            HKTMonadFiberAsync.Run();
        }

        public static void WhereAmI(string what)
        {
            Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId} Time {DateTime.Now}: {what}");
        }
    }

    public class FiberHelper
    {
        [DllImport("kernel32.dll")]
        static extern IntPtr ConvertThreadToFiber(IntPtr lpParameter);

        [DllImport("kernel32.dll")]
        static extern IntPtr CreateFiber(uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter);

        [DllImport("kernel32.dll")]
        static extern IntPtr SwitchToFiber(IntPtr lpStartAddress);

        [DllImport("kernel32.dll")]
        static extern IntPtr DeleteFiber(IntPtr lpStartAddress);

        Dictionary<int, IntPtr> actions;
        public IntPtr fiberCaller;

        public FiberHelper()
        {
            actions = new Dictionary<int, IntPtr>();
        }

        public void Convert()
        {
            actions.Add(0, ConvertThreadToFiber(IntPtr.Zero));
        }

        public void Create(int action)
        {
            actions.Add(action, CreateFiber(1024 * 1024, fiberCaller, (IntPtr)action));
        }

        public void Switch(int action)
        {
            Thread.Sleep(100);
            IntPtr param = actions[action];
            SwitchToFiber(param);
        }

        public void Delete(int action)
        {
            DeleteFiber(actions[action]);
        }
    }

    public class HKTMonadFiberAsync
    {
        public static ConcurrentDictionary<int, byte> readyToGo = new ConcurrentDictionary<int, byte>();
        public static ConcurrentDictionary<int, Action> allJobs = new ConcurrentDictionary<int, Action>();
        public static FiberHelper helper = new FiberHelper();
        public static int current;
        public static bool done;

        public static int StartFiber(int actionId)
        {
            allJobs[actionId]();
            if (actionId != 0)
            {
                HKTMonadFiberAsync.done = true;
                HKTMonadFiberAsync.helper.Switch(0);
            }

            return 0;
        }

        delegate int StartFiberDelegate(int actionId);

        public static void Run()
        {
            helper.fiberCaller = Marshal.GetFunctionPointerForDelegate((StartFiberDelegate)StartFiber);

            helper.Convert();

            allJobs.TryAdd(1, RunInternal);
            readyToGo.TryAdd(1, 0);
            helper.Create(1);

            allJobs.TryAdd(2, SideJob);
            readyToGo.TryAdd(2, 0);
            helper.Create(2);


            while (true)
            {
                done = false;
                var keys = readyToGo.Keys.GetEnumerator();
                while (keys.MoveNext())
                {
                    current = keys.Current;
                    helper.Switch(current);
                    if (done)
                    {
                        helper.Delete(current);
                        Action action;
                        allJobs.TryRemove(current, out action);
                        byte b;
                        readyToGo.TryRemove(current, out b);
                    }
                }

                if (allJobs.IsEmpty)
                {
                    break;
                }

                Thread.Sleep(1);
            }
        }

        private static void RunInternal()
        {
            Program.WhereAmI("\tBefore nesting");

            RunInternalNested<AsyncBuilder>();
            //RunInternalNested<IdBuilder>();

            Program.WhereAmI("\tAfter nesting");
        }

        private static void RunInternalNested<T>() where T : Builder, new()
        {
            Program.WhereAmI("\t\tBefore creating delay");

            Delay<T>(2000);

            Program.WhereAmI("\t\tAfter sleeping");

            var data = Data<T, string>("Some string");

            Program.WhereAmI($"\t\tAfter creating data {data}");
        }

        private static void Delay<T>(int timeout) where T : Builder, new()
        {
            var context = new T().Build<object>();
            var timer = new Timer(_ => context.Complete(new object()), null, timeout, Timeout.Infinite);
            GC.KeepAlive(timer);
            context.Map((object)null, _ => timeout);
        }

        private static U Data<T, U>(U d) where T : Builder, new()
        {
            var context = new T().Build<U>();
            return context.Map(d, _ => d);
        }

        private static void SideJob()
        {
            Program.WhereAmI("\tSide job");
        }
    }

    public abstract class Builder
    {
        public abstract Monad<T> Build<T>();
    }

    public class IdBuilder : Builder
    {
        public override Monad<T> Build<T>()
        {
            return new Id<T>();
        }
    }

    public class AsyncBuilder : Builder
    {
        public override Monad<T> Build<T>()
        {
            return new Async<T>();
        }
    }

    public interface Monad<T>
    {
        U Map<U>(T value, Func<T, U> lambda);
        void Complete(T t);
    }

    public class Id<T> : Monad<T>
    {
        private T t;

        public U Map<U>(T value, Func<T, U> lambda)
        {
            this.t = value;
            lock (this)
            {
                while (t == null)
                {
                    Monitor.Wait(this);
                }
            }

            return lambda(this.t);
        }

        public void Complete(T t)
        {
            lock (this)
            {
                this.t = t;
                Monitor.PulseAll(this);
            }
        }
    }

    public class Async<T> : Monad<T>
    {
        private T t;
        private int current;

        public U Map<U>(T value, Func<T, U> lambda)
        {
            this.t = value;
            if (t == null)
            {
                this.current = HKTMonadFiberAsync.current;
                byte b;
                HKTMonadFiberAsync.readyToGo.TryRemove(this.current, out b);
                HKTMonadFiberAsync.helper.Switch(0);
            }

            return lambda(this.t);
        }

        public void Complete(T t)
        {
            this.t = t;
            HKTMonadFiberAsync.readyToGo.TryAdd(this.current, 0);
        }
    }
}

Crucial differences are in lines 22-65. We use P/Invoke and pass things as IntPtrs so they work in x86 and in x64. Also, notice the Marshal.GetFunctionPointerForDelegate in line 91 which allows us to call the managed code from the WinAPI.

]]>
https://blog.adamfurmanek.pl/2022/07/02/async-wandering-part-14/feed/ 0
.NET Inside Out Part 29 – Terminating some existing thread with jumps https://blog.adamfurmanek.pl/2022/03/26/net-inside-out-part-29/ https://blog.adamfurmanek.pl/2022/03/26/net-inside-out-part-29/#respond Sat, 26 Mar 2022 09:00:06 +0000 https://blog.adamfurmanek.pl/?p=4413 Continue reading .NET Inside Out Part 29 – Terminating some existing thread with jumps]]>

This is the twentieth ninth part of the .NET Inside Out series. For your convenience you can find other parts in the table of contents in Part 1 – Virtual and non-virtual calls in C#

Last time we discussed ways to terminate a thread. We mentioned a method based on unwinding the stack and preserving the registers. Today we’re going to implement this solution. I’m using .NET 5 on Windows 10 x64.

We start with the following code:

using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;

namespace RerouteThreadWithDebugger
{
    class Program
    {
        static long[] registersHolderArray = new long[9];
        static int[] entryPointHolderArray = new int[3];

        static void Main(string[] args)
        {
            HackEntryPoint();

            var infinite = new Thread(InfiniteThread);
            infinite.Start();
            Thread.Sleep(2000);

            Console.WriteLine("Doing magic");

            TerminateThread(infinite);

            infinite.Join();
            Console.WriteLine("Finished!");
        }

        static void InfiniteThread()
        {
            while (true)
            {
                Console.WriteLine($"{Thread.CurrentThread.ManagedThreadId} - Still looping");
                Thread.Sleep(1000);
            }
        }

        //...
    }
}

We create a thread which runs forever and we want to terminate it.

First, we need to modify the entry point of the thread and capture registers once it starts. Let’s do it:

static void HackEntryPoint()
{
	// Get address of array to store registers
	var registersArrayAddress = GetArrayPosition(registersHolderArray);

	// Get address of calling the function
	var sourceMethod = typeof(Program).GetMethod(nameof(InfiniteThread), BindingFlags.Static | BindingFlags.NonPublic);
	RuntimeHelpers.PrepareMethod(sourceMethod.MethodHandle);

	IntPtr entryPointAddress = Marshal.ReadIntPtr(sourceMethod.MethodHandle.Value, 2 * IntPtr.Size);
	UnlockPage(entryPointAddress);

	// Preserve preamble of the entry point
	Marshal.Copy(entryPointAddress, entryPointHolderArray, 0, entryPointHolderArray.Length);

	// Create a code for new entry point
	var newConstructor = new byte[0]
		// --------------------------------------------
		.Concat(new byte[] {
			0x48, 0xB8,                                                     // movabs rax, address_of_array
		}).Concat(BitConverter.GetBytes((long)registersArrayAddress)).Concat(new byte[] {
			0x48, 0x89, 0x20,                                               // mov QWORD PTR [rax], rsp
			0x48, 0x89, 0x68, 0x8,                                          // mov QWORD PTR [rax+0x8], rbp
			0x48, 0x89, 0x70, 0x10,                                         // mov QWORD PTR [rax+0x10], rsi
			0x48, 0x89, 0x78, 0x18,                                         // mov QWORD PTR [rax+0x18], rdi
			0x48, 0x89, 0x58, 0x20,                                         // mov QWORD PTR [rax+0x20], rbx
			0x4C, 0x89, 0x60, 0x28,                                         // mov QWORD PTR [rax+0x28], r12
			0x4C, 0x89, 0x68, 0x30,                                         // mov QWORD PTR [rax+0x30], r13
			0x4C, 0x89, 0x70, 0x38,                                         // mov QWORD PTR [rax+0x38], r14
			0x4C, 0x89, 0x78, 0x40,                                         // mov QWORD PTR [rax+0x40], r15
			0x48, 0xB8                                                      // movabs rax, address_of_thread_constructor
		}).Concat(BitConverter.GetBytes((long)entryPointAddress)).Concat(new byte[] {
			0xC7, 0x00                                                      // mov DWORD PTR [rax], 0-4 bytes of constructor function
		}).Concat(BitConverter.GetBytes((int)entryPointHolderArray[0])).Concat(new byte[] {
			0xC7, 0x40, 0x04,                                               // mov DWORD PTR [rax+0x4], 5-8 bytes of constructor function
		}).Concat(BitConverter.GetBytes((int)entryPointHolderArray[1])).Concat(new byte[] {
			0xC7, 0x40, 0x08,                                               // mov DWORD PTR [rax+0x8], 9-12 bytes of constructor function
		}).Concat(BitConverter.GetBytes((int)entryPointHolderArray[2])).Concat(new byte[] {
			0x50,                                                           // push rax
			0xC3                                                            // ret
		}).ToArray();

	var newEntryPointAddress = GetArrayPosition(newConstructor);

	Console.WriteLine($"Holder addres {registersArrayAddress.ToString("X")}\n" +
		$"Entrypoint code {entryPointAddress.ToString("X")}\n" +
		$"New entrypoint code {newEntryPointAddress.ToString("X")}");

	HijackMethod(entryPointAddress, newEntryPointAddress);
}


private static IntPtr GetArrayPosition(object array)
{
	GCHandle handle = GCHandle.Alloc(array, GCHandleType.Pinned);
	return handle.AddrOfPinnedObject();
}


public static void HijackMethod(IntPtr sourceAddress, IntPtr targetAddress)
{
	byte[] instruction = new byte[] {
		0x48, 0xB8 // mov rax <value>
	}
	.Concat(BitConverter.GetBytes((long)targetAddress))
	.Concat(new byte[] {
		0x50, // push rax
		0xC3  // ret
	}).ToArray();

	UnlockPage(sourceAddress);
	UnlockPage(targetAddress);

	Marshal.Copy(instruction, 0, sourceAddress, instruction.Length);
}

[DllImport("kernel32.dll", SetLastError = true)]
static extern bool VirtualProtect(IntPtr lpAddress, uint dwSize, uint flNewProtect, out uint lpflOldProtect);

private static void UnlockPage(IntPtr address)
{
	uint pageSize = 4096;
	uint pageExecuteReadWrite = 0x40;
	VirtualProtect(address, pageSize, pageExecuteReadWrite, out _);
}

static string DBG_PATH = @"PATH TO CDB";
static string LOAD_SOS = @".load PATH TO SOS";

First, we use a helper method GetArrayPosition to extract the address of array’s content. We first use it to get the address of an array to store registers which need to be preserved in x64 calling convention (these are rsp, rbp, rsi, rdi, rbx, r12, r13, r14, r15).

Next, we get the address of the entrypoint of the thread (lines 6-11). This is user’s code.

Now, we need to modify the entrypoint. We want to make it jump to our code so we need an array to hold the preamble. 12 bytes are enough (line 14).

Next, we craft the machine code to create a set jump callsite. Let’s go through it line by line:

Lines 20-21: we store the address of the array holding registers in the rax register so we can use it.
Lines 22-30: we copy registers one by one to the array.
Lines 31-32: we copy the address of the original entrypoint to the rax register so we can restore the entrypoint.
Lines 33-38: we copy 12 bytes from the array to the original entrypoint.
Lines 39-40: we jump back to the original (now restored) entrypoint.

Where do these 12 bytes come from? It’s in the HijackMethod which pushes address of the jump target (lines 62-65) and then jumps (lines 67-68). This is 12 bytes in total.

Okay, we have the entrypoint. We now go to the termination method:

static void TerminateThread(Thread thread)
{
	var processId = Environment.ProcessId;

	var threadsCommand = @$"-p {processId} -noio -logo cdb.log -c """ +
		string.Join("; ",
			LOAD_SOS,
			$@"!threads",
			$@"qd"
		) +
		@$"""";

	var process = Process.Start(
		DBG_PATH,
		threadsCommand
	);
	process.WaitForExit();

	var threadsOutput = File.ReadAllText("cdb.log");

	var nativeThreadToKill = threadsOutput
		.Substring(threadsOutput.IndexOf("Hosted Runtime"))
		.Split("\r", StringSplitOptions.RemoveEmptyEntries).Where(line =>
		{
			var parts = line.Trim().Split(" ", StringSplitOptions.RemoveEmptyEntries);
			return parts.Length > 2 && parts[1] == $"{thread.ManagedThreadId}";
		}).FirstOrDefault().Trim().Split(" ", StringSplitOptions.RemoveEmptyEntries)[0];

	var stackCommand = @$"-p {processId} -noio -logo cdb.log -c """ +
		string.Join("; ",
			LOAD_SOS,
			$@"~{nativeThreadToKill}s",
			$@"!clrstack",
			$@"qd"
		) +
		@$"""";

	process = Process.Start(
		DBG_PATH,
		stackCommand
	);
	process.WaitForExit();

	var stackOutput = File.ReadAllText("cdb.log");

	var stackReturnAddress = stackOutput
		.Split("\r", StringSplitOptions.RemoveEmptyEntries)
		.Where(line => line.Contains("System.Threading.ThreadHelper.ThreadStart_Context"))
		.FirstOrDefault()
		.Trim()
		.Split(" ", StringSplitOptions.RemoveEmptyEntries)[1];

	var rerouteCommand = @$"-p {processId} -noio -c """ +
		string.Join("; ",
			$@"~{nativeThreadToKill}s",
			$@"r rip=0x{stackReturnAddress}",
			$@"r rsp=0x{(registersHolderArray[0] + IntPtr.Size).ToString("X")}",
			$@"r rbp=0x{registersHolderArray[1].ToString("X")}",
			$@"r rsi=0x{registersHolderArray[2].ToString("X")}",
			$@"r rdi=0x{registersHolderArray[3].ToString("X")}",
			$@"r rbx=0x{registersHolderArray[4].ToString("X")}",
			$@"r r12=0x{registersHolderArray[5].ToString("X")}",
			$@"r r13=0x{registersHolderArray[6].ToString("X")}",
			$@"r r14=0x{registersHolderArray[7].ToString("X")}",
			$@"r r15=0x{registersHolderArray[8].ToString("X")}",
			$@"qd"
		) +
		@$"""";

	Process.Start(
		DBG_PATH,
		rerouteCommand
	);
}

First, we attach the debugger and dump threads (lines 5-17). We then extract the native thread id of the thread we want to kill (lines 21-27).

Next, we want to dump the stack to extract the return address (lines 29-51). What we do is we dump the output of !clrstack command, get line showing the ThreadHelper.ThreadStart_Context method which calls our entrypoint, and get its return address.

Finally, we create a command which restores all the addresses. Note that we can hardcode values in the command as we can read them from the array just like that. Notice also that we need to increase the stack pointer to drop the return address of the original entrypoint from it (line 57)

Code works and makes the thread to terminate gracefully. However, it doesn’t call any finally blocks. It just disappears. Combine this with our code for handling stack overflow issue and we now have a pretty robust test runner which can run your unit tests without risking StackOverflowException or other infinite loops.

]]>
https://blog.adamfurmanek.pl/2022/03/26/net-inside-out-part-29/feed/ 0
.NET Inside Out Part 28 – Terminating some existing thread https://blog.adamfurmanek.pl/2022/03/19/net-inside-out-part-28/ https://blog.adamfurmanek.pl/2022/03/19/net-inside-out-part-28/#respond Sat, 19 Mar 2022 09:00:53 +0000 https://blog.adamfurmanek.pl/?p=4410 Continue reading .NET Inside Out Part 28 – Terminating some existing thread]]>

This is the twentieth eighth part of the .NET Inside Out series. For your convenience you can find other parts in the table of contents in Part 1 – Virtual and non-virtual calls in C#

Last time we learned how to reroute an existing thread to some other code. Today we want to terminate the thread.

First method: there is a method Thread.Abort which throws PlatformNotSupportedException starting with .NET Core. Too bad.

Second method: we can go with TerminateThread. The problem is there is no clear equivalent in non-Windows world. It also has some drawback which we’ll cover later.

Third method: we can go with ExitThread or pthread_exit To do that we need to reroute the thread the same way we did in the last part and call this method. However, it suffers from the same issue as method 2 — .NET doesn’t understand what happened. Once we exit the thread this way .NET just cannot handle it correctly anymore. It means that if you try calling terminatedThread.join you get a deadlock. You could work that around by setting IsBackground = true so it doesn’t stop the process from exiting but it’s still bad.

Fourth method: we can simulate exiting. We suspend the thread, take its stack, examine it and exit all the things. That’s nearly impossible as we’d need to analyze the whole code with all dependencies. Even reading the machine code without symbols may be impossible in x86, not to mention that we might need to solve the halting problem.

Fifth method: we unwind the stack and then clear the thread. This is the only working method I’m aware of.

Unwinding stack

First, we need to hijack the thread constructor. Just before it starts executing the thread function we take all important registers (rbp, rsp, rsi, rbx, rdx) and save them on the side (so we do the “set jump” part). Next, we call the thread function.

Next, once we want to stop the thread, we restore all important registers and let it carry on. This way we remove all the stack frames from the stack and continue as if the main function finished.

]]>
https://blog.adamfurmanek.pl/2022/03/19/net-inside-out-part-28/feed/ 0
.NET Inside Out Part 27 – Rerouting a running thread to some other method https://blog.adamfurmanek.pl/2022/03/12/net-inside-out-part-27/ https://blog.adamfurmanek.pl/2022/03/12/net-inside-out-part-27/#respond Sat, 12 Mar 2022 09:00:22 +0000 https://blog.adamfurmanek.pl/?p=4408 Continue reading .NET Inside Out Part 27 – Rerouting a running thread to some other method]]>

This is the twentieth seventh part of the .NET Inside Out series. For your convenience you can find other parts in the table of contents in Part 1 – Virtual and non-virtual calls in C#

Today we are going to grab an existing running thread and make it run some other code.

Let’s take this:

using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Threading;

namespace RerouteThreadWithDebugger
{
    class Program
    {
        static void Main(string[] args)
        {
            var infinite = new Thread(() => InfiniteThread());
            infinite.Start();
            Thread.Sleep(2000);
            HackThread(infinite);
            infinite.Join();
            Console.WriteLine("Finished!");
        }

        static void InfiniteThread()
        {
            while (true)
            {
                Console.WriteLine($"{Thread.CurrentThread.ManagedThreadId} - Still looping");
                Thread.Sleep(1000);
            }
        }

        public static void InfiniteThreadReplacement()
        {
            Console.WriteLine($"{Thread.CurrentThread.ManagedThreadId} - Replaced.");
            throw new Exception("Killed");
        }
        //...
    }
}

We have a thread which executes some infinite loop. We’d like to make it jump out of that loop and do something else. How can we do that?

The trick is to modify its instruction pointer register. We can’t do it from the same process directly as we need to debug it so we’ll use CDB for that. Obviously, this can be done manually if needed:

static void HackThread(Thread thread)
{
	var method = typeof(Program).GetMethod(nameof(InfiniteThreadReplacement), BindingFlags.Static | BindingFlags.Public);
	RuntimeHelpers.PrepareMethod(method.MethodHandle);

	var methodAddress = method.MethodHandle.GetFunctionPointer();

	var processId = Environment.ProcessId;

	var threadsCommand = @$"-p {processId} -noio -logo cdb.log -c """ +
		string.Join("; ",
			LOAD_SOS,
			$@"!threads",
			$@"qd"
		) +
		@$"""";
	
	var process = Process.Start(
		DBG_PATH,
		threadsCommand
	);
	process.WaitForExit();

	var threadsOutput = File.ReadAllText("cdb.log");

	var nativeThreadToKill = threadsOutput
		.Substring(threadsOutput.IndexOf("Hosted Runtime"))
		.Split("\r", StringSplitOptions.RemoveEmptyEntries).Where(line =>
	{
		var parts = line.Trim().Split(" ", StringSplitOptions.RemoveEmptyEntries);
		return parts.Length > 2 && parts[1] == $"{thread.ManagedThreadId}";
	}).Select(line => line.Trim().Split(" ", StringSplitOptions.RemoveEmptyEntries)[0])
	.FirstOrDefault();
	
	var rerouteCommand = @$"-p {processId} -noio -c """ +
		string.Join("; ",
			$@"~{nativeThreadToKill}s",
			$@"r rip=0x{methodAddress.ToString("X")}", // Reroute a thread
			$@"qd"
		) +
		@$"""";

	Process.Start(
		DBG_PATH,
		rerouteCommand
	);
}

static string DBG_PATH = @"path_to_cdb.exe";
static string LOAD_SOS = @"path_to_sos.dll";

How does it work? We first run CDB and dump threads to get the native thread id from the output of the !threads command. There are other ways to do so but this one is the most reliable.

Next, we run CDB again. This time it switches to thread, modifies its rip register and then exists.

The problem with this approach is that once we modify the thread it becomes unreliable. We don’t know if the stack is correct or whether we can safely exit the method. Ideally, we’d like to kill the thread. We’ll discuss this aspect in some later part.

]]>
https://blog.adamfurmanek.pl/2022/03/12/net-inside-out-part-27/feed/ 0
Custom memory allocation in C# Part 18 — Hijacking methods on .NET 5 with modifying machine code https://blog.adamfurmanek.pl/2021/12/11/custom-memory-allocation-in-c-part-18/ https://blog.adamfurmanek.pl/2021/12/11/custom-memory-allocation-in-c-part-18/#respond Sat, 11 Dec 2021 09:00:40 +0000 https://blog.adamfurmanek.pl/?p=4272 Continue reading Custom memory allocation in C# Part 18 — Hijacking methods on .NET 5 with modifying machine code]]>

This is the eighteenth part of the Custom memory allocation series. For your convenience you can find other parts in the table of contents in Part 1 — Allocating object on a stack

Today we are going to see a rewritten way of hijacking method with machine code. It works in Windows and Linux, for both Debug and Release using .NET 5.

using System;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;

namespace MethodHijackerNetCore
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine($"Calling StaticString method before hacking:\t{TestClass.StaticString()}");
            HijackMethod(typeof(TestClass), nameof(TestClass.StaticString), typeof(Program), nameof(StaticStringHijacked));
            Console.WriteLine($"Calling StaticString method after hacking:\t{TestClass.StaticString()}");

            Console.WriteLine();

            var instance = new TestClass();
            Console.WriteLine($"Calling InstanceString method before hacking:\t{instance.InstanceString()}");
            HijackMethod(typeof(TestClass), nameof(TestClass.InstanceString), typeof(Program), nameof(InstanceStringHijacked));
            Console.WriteLine($"Calling InstanceString method after hacking:\t{instance.InstanceString()}");

            Console.WriteLine();

            Vector2 v = new Vector2(9.856331f, -2.2437377f);
            for (int i = 1; i <= 35 ; i++)
            {
                MultiTieredClass.Test(v, i);
                Thread.Sleep(100);
            }
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public static string StaticStringHijacked()
        {
            return "Static string hijacked";
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public string InstanceStringHijacked()
        {
            return "Instance string hijacked";
        }

        public static void HijackMethod(Type sourceType, string sourceMethod, Type targetType, string targetMethod)
        {
            var source = sourceType.GetMethod(sourceMethod);
            var target = targetType.GetMethod(targetMethod);

            RuntimeHelpers.PrepareMethod(source.MethodHandle);
            RuntimeHelpers.PrepareMethod(target.MethodHandle);


            var offset = 2 * IntPtr.Size;
            IntPtr sourceAddress = Marshal.ReadIntPtr(source.MethodHandle.Value, offset);
            IntPtr targetAddress = Marshal.ReadIntPtr(target.MethodHandle.Value, offset);

            var is32Bit = IntPtr.Size == 4;
            byte[] instruction;

            if (is32Bit)
            {
                instruction = new byte[] {
                    0x68, // push <value>
                }
                 .Concat(BitConverter.GetBytes((int)targetAddress))
                 .Concat(new byte[] {
                    0xC3 //ret
                 }).ToArray();
            }
            else
            {
                instruction = new byte[] {
                    0x48, 0xB8 // mov rax <value>
                }
                .Concat(BitConverter.GetBytes((long)targetAddress))
                .Concat(new byte[] {
                    0x50, // push rax
                    0xC3  // ret
                }).ToArray();
            }

            Marshal.Copy(instruction, 0, sourceAddress, instruction.Length);
        }
    }

    class TestClass
    {
        [MethodImpl(MethodImplOptions.NoInlining)]
        public static string StaticString()
        {
            return "Static string";
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public string InstanceString()
        {
            return "Instance string";
        }
    }

    class MultiTieredClass
    {
        [MethodImpl(MethodImplOptions.NoInlining)]
        public static void Test(Vector2 v, int i)
        {
            v = Vector2.Normalize(v);
            Console.WriteLine($"Vector iteration {i:0000}:\t{v}\t{TestClass.StaticString()}");
        }
    }
}

Tested with .NET 5.0.102 on Windows and .NET 5.0.401 on WSL2 Ubuntu 20.04. This is the output:

Calling StaticString method before hacking:     Static string
Calling StaticString method after hacking:      Static string hijacked

Calling InstanceString method before hacking:   Instance string
Calling InstanceString method after hacking:    Instance string hijacked

Vector iteration 0001:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0002:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0003:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0004:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0005:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0006:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0007:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0008:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0009:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0010:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0011:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0012:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0013:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0014:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0015:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0016:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0017:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0018:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0019:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0020:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0021:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0022:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0023:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0024:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0025:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0026:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0027:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0028:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0029:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0030:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0031:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0032:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0033:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0034:  <0.97505456, -0.22196563>       Static string
Vector iteration 0035:  <0.97505456, -0.22196563>       Static string
Examine MethodDescriptor: 7FFA3ACF5218

So we clearly see that the hacking works and that after multitiered compilation kicks in it no longer calls method but inlines it.

]]>
https://blog.adamfurmanek.pl/2021/12/11/custom-memory-allocation-in-c-part-18/feed/ 0
Custom memory allocation in C# Part 17 — Hijacking methods on .NET 5 with modifying metadata curious thing https://blog.adamfurmanek.pl/2021/12/04/custom-memory-allocation-in-c-part-17/ https://blog.adamfurmanek.pl/2021/12/04/custom-memory-allocation-in-c-part-17/#respond Sat, 04 Dec 2021 09:00:48 +0000 https://blog.adamfurmanek.pl/?p=4270 Continue reading Custom memory allocation in C# Part 17 — Hijacking methods on .NET 5 with modifying metadata curious thing]]>

This is the seventeenth part of the Custom memory allocation series. For your convenience you can find other parts in the table of contents in Part 1 — Allocating object on a stack

I was rewriting my method hijacking samples to .NET 5 and I found an interesting behavior. Let’s take this code:

using System;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;

namespace OverridingSealedMethodNetCore
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine($"Calling StaticString method before hacking:\t{TestClass.StaticString()}");
            HijackMethod(typeof(TestClass), nameof(TestClass.StaticString), typeof(Program), nameof(StaticStringHijacked));
            Console.WriteLine($"Calling StaticString method after hacking:\t{TestClass.StaticString()}");

            Console.WriteLine();

            var instance = new TestClass();
            Console.WriteLine($"Calling InstanceString method before hacking:\t{instance.InstanceString()}");
            HijackMethod(typeof(TestClass), nameof(TestClass.InstanceString), typeof(Program), nameof(InstanceStringHijacked));
            Console.WriteLine($"Calling InstanceString method after hacking:\t{instance.InstanceString()}");

            Console.WriteLine();

            Vector2 v = new Vector2(9.856331f, -2.2437377f);
            for (int i = 1; i <= 35; i++)
            {
                MultiTieredClass.Test(v, i);
                Thread.Sleep(100);
            }
        }

        public static void HijackMethod(Type sourceType, string sourceMethod, Type targetType, string targetMethod)
        {
            // Get methods using reflection
            var source = sourceType.GetMethod(sourceMethod);
            var target = targetType.GetMethod(targetMethod);

            // Prepare methods to get machine code (not needed in this example, though)
            RuntimeHelpers.PrepareMethod(source.MethodHandle);
            RuntimeHelpers.PrepareMethod(target.MethodHandle);

            var sourceMethodDescriptorAddress = source.MethodHandle.Value;
            var targetMethodMachineCodeAddress = target.MethodHandle.GetFunctionPointer();

            // Pointer is two pointers from the beginning of the method descriptor
            Marshal.WriteIntPtr(sourceMethodDescriptorAddress, 2 * IntPtr.Size, targetMethodMachineCodeAddress);
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public static string StaticStringHijacked()
        {
            return "Static string hijacked";
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public string InstanceStringHijacked()
        {
             return "Instance string hijacked";
        }
    }

    class TestClass
    {
        [MethodImpl(MethodImplOptions.NoInlining)]
        public static string StaticString()
        {
            return "Static string";
        }

        [MethodImpl(MethodImplOptions.NoInlining)]
        public string InstanceString()
        {
            return "Instance string";
        }
    }

    class MultiTieredClass
    {
        [MethodImpl(MethodImplOptions.NoInlining)]
        public static void Test(Vector2 v, int i)
        {
            v = Vector2.Normalize(v);
            Console.WriteLine($"Vector iteration {i:0000}:\t{v}\t{TestClass.StaticString()}");
        }
    }
}

If you follow my blog then there is nothing new here. We try to hijack method by modifying its runtime metadata. The MultiTiered part is only to show recompilation of the code. I’m running this on W10 x64 in Release x64 mode and I’m getting this output:

Calling StaticString method before hacking:     Static string
Calling StaticString method after hacking:      Static string

Calling InstanceString method before hacking:   Instance string
Calling InstanceString method after hacking:    Instance string

Vector iteration 0001:  <0.9750545, -0.22196561>        Static string
Vector iteration 0002:  <0.9750545, -0.22196561>        Static string
Vector iteration 0003:  <0.9750545, -0.22196561>        Static string
Vector iteration 0004:  <0.9750545, -0.22196561>        Static string
Vector iteration 0005:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0006:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0007:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0008:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0009:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0010:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0011:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0012:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0013:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0014:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0015:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0016:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0017:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0018:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0019:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0020:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0021:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0022:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0023:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0024:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0025:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0026:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0027:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0028:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0029:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0030:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0031:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0032:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0033:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0034:  <0.9750545, -0.22196561>        Static string hijacked
Vector iteration 0035:  <0.97505456, -0.22196563>       Static string

And this is nice. Notice that first two lines of the output show that even though we hacked the method, we’re still not getting the new behavior. That’s first why.

Next, we see that we start calling the example of multitiered compilation method and first 4 instances are consistent. However, in fifth one we see that a hijacked method was called instead of the original one. That’s second why. This lasts until iteration 35 when multitiered compilation kicks in and recompiles things.

I don’t know the answer why it works this way but I presume there is this new code cache thing which was implemented around .NET Core 2.1 to support multitiered compilation. I may be wrong, though.

]]>
https://blog.adamfurmanek.pl/2021/12/04/custom-memory-allocation-in-c-part-17/feed/ 0
Custom memory allocation in C# Part 16 — Hijacking new on Linux with .NET 5 https://blog.adamfurmanek.pl/2021/09/25/custom-memory-allocation-in-c-part-16/ https://blog.adamfurmanek.pl/2021/09/25/custom-memory-allocation-in-c-part-16/#comments Sat, 25 Sep 2021 08:00:20 +0000 https://blog.adamfurmanek.pl/?p=4019 Continue reading Custom memory allocation in C# Part 16 — Hijacking new on Linux with .NET 5]]>

This is the sixteenth part of the Custom memory allocation series. For your convenience you can find other parts in the table of contents in Part 1 — Allocating object on a stack

I was recently asked if it’s possible to hijack the new operator in Linux. We’ve already seen that we can do it in both .NET Framework and .NET Core, in both x86_32 and x86_64, now it’s time to do it in .NET 5 on Linux.

Docker configuration

I’m going to use Ubuntu 20.04 on WSL2 running on Windows 10:

afish@ubuntu:/home/af$ uname -r
4.19.128-microsoft-standard

I’m going to use Docker for installing .NET and everything around. So I do this to create a container based on .NET 5:

docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --security-opt apparmor=unconfined --rm -i -v /home/afish/makeref:/makeref mcr.microsoft.com/dotnet/sdk:5.0 bash

You can see I’m mapping directory /home/afish/makeref and enabling some security flags to be able to debug application and modify page protection.

lldb and SOS

First thing I want to do is to install lldb and SOS:

apt-get update

Get:1 http://security.debian.org/debian-security buster/updates InRelease [65.4 kB]
Get:2 http://deb.debian.org/debian buster InRelease [121 kB]
Get:3 http://deb.debian.org/debian buster-updates InRelease [51.9 kB]
Get:4 http://security.debian.org/debian-security buster/updates/main amd64 Packages [258 kB]
Get:5 http://deb.debian.org/debian buster/main amd64 Packages [7907 kB]
Get:6 http://deb.debian.org/debian buster-updates/main amd64 Packages [7860 B]
Fetched 8412 kB in 2s (3467 kB/s)
Reading package lists...

apt-get install -y lldb

Reading package lists...
Building dependency tree...
Reading state information...
The following additional packages will be installed:
  binfmt-support bzip2 file libbsd0 libc-dev-bin libc6-dev libedit2 libffi-dev
  libgpm2 liblldb-7 libllvm7 libmagic-mgc libmagic1 libncurses-dev libncurses6
  libpipeline1 libpython-stdlib libpython2-stdlib libpython2.7
  libpython2.7-minimal libpython2.7-stdlib libreadline7 libsqlite3-0
  libtinfo-dev linux-libc-dev lldb-7 llvm-7 llvm-7-dev llvm-7-runtime lsb-base
  manpages manpages-dev mime-support python python-lldb-7 python-minimal
  python-six python2 python2-minimal python2.7 python2.7-minimal
  readline-common xz-utils
Suggested packages:
  bzip2-doc glibc-doc gpm ncurses-doc llvm-7-doc man-browser python-doc
  python-tk python2-doc python2.7-doc binutils readline-doc
The following NEW packages will be installed:
  binfmt-support bzip2 file libbsd0 libc-dev-bin libc6-dev libedit2 libffi-dev
  libgpm2 liblldb-7 libllvm7 libmagic-mgc libmagic1 libncurses-dev libncurses6
  libpipeline1 libpython-stdlib libpython2-stdlib libpython2.7
  libpython2.7-minimal libpython2.7-stdlib libreadline7 libsqlite3-0
  libtinfo-dev linux-libc-dev lldb lldb-7 llvm-7 llvm-7-dev llvm-7-runtime
  lsb-base manpages manpages-dev mime-support python python-lldb-7
  python-minimal python-six python2 python2-minimal python2.7
  python2.7-minimal readline-common xz-utils
0 upgraded, 44 newly installed, 0 to remove and 1 not upgraded.
Need to get 71.3 MB of archives.
After this operation, 369 MB of additional disk space will be used.
Get:1 http://deb.debian.org/debian buster/main amd64 libpython2.7-minimal amd64 2.7.16-2+deb10u1 [395 kB]
Get:2 http://deb.debian.org/debian buster/main amd64 python2.7-minimal amd64 2.7.16-2+deb10u1 [1369 kB]
Get:3 http://deb.debian.org/debian buster/main amd64 python2-minimal amd64 2.7.16-1 [41.4 kB]
Get:4 http://deb.debian.org/debian buster/main amd64 python-minimal amd64 2.7.16-1 [21.0 kB]
Get:5 http://deb.debian.org/debian buster/main amd64 mime-support all 3.62 [37.2 kB]
Get:6 http://deb.debian.org/debian buster/main amd64 readline-common all 7.0-5 [70.6 kB]
Get:7 http://deb.debian.org/debian buster/main amd64 libreadline7 amd64 7.0-5 [151 kB]
Get:8 http://deb.debian.org/debian buster/main amd64 libsqlite3-0 amd64 3.27.2-3+deb10u1 [641 kB]
Get:9 http://deb.debian.org/debian buster/main amd64 libpython2.7-stdlib amd64 2.7.16-2+deb10u1 [1912 kB]
Get:10 http://deb.debian.org/debian buster/main amd64 python2.7 amd64 2.7.16-2+deb10u1 [305 kB]
Get:11 http://deb.debian.org/debian buster/main amd64 libpython2-stdlib amd64 2.7.16-1 [20.8 kB]
Get:12 http://deb.debian.org/debian buster/main amd64 libpython-stdlib amd64 2.7.16-1 [20.8 kB]
Get:13 http://deb.debian.org/debian buster/main amd64 python2 amd64 2.7.16-1 [41.6 kB]
Get:14 http://deb.debian.org/debian buster/main amd64 python amd64 2.7.16-1 [22.8 kB]
Get:15 http://deb.debian.org/debian buster/main amd64 bzip2 amd64 1.0.6-9.2~deb10u1 [48.4 kB]
Get:16 http://deb.debian.org/debian buster/main amd64 libmagic-mgc amd64 1:5.35-4+deb10u1 [242 kB]
Get:17 http://deb.debian.org/debian buster/main amd64 libmagic1 amd64 1:5.35-4+deb10u1 [117 kB]
Get:18 http://deb.debian.org/debian buster/main amd64 file amd64 1:5.35-4+deb10u1 [66.4 kB]
Get:19 http://deb.debian.org/debian buster/main amd64 manpages all 4.16-2 [1295 kB]
Get:20 http://deb.debian.org/debian buster/main amd64 xz-utils amd64 5.2.4-1 [183 kB]
Get:21 http://deb.debian.org/debian buster/main amd64 libpipeline1 amd64 1.5.1-2 [31.2 kB]
Get:22 http://deb.debian.org/debian buster/main amd64 lsb-base all 10.2019051400 [28.4 kB]
Get:23 http://deb.debian.org/debian buster/main amd64 binfmt-support amd64 2.2.0-2 [70.0 kB]
Get:24 http://deb.debian.org/debian buster/main amd64 libbsd0 amd64 0.9.1-2 [99.5 kB]
Get:25 http://deb.debian.org/debian buster/main amd64 libc-dev-bin amd64 2.28-10 [275 kB]
Get:26 http://deb.debian.org/debian buster/main amd64 linux-libc-dev amd64 4.19.160-2 [1416 kB]
Get:27 http://deb.debian.org/debian buster/main amd64 libc6-dev amd64 2.28-10 [2691 kB]
Get:28 http://deb.debian.org/debian buster/main amd64 libedit2 amd64 3.1-20181209-1 [94.0 kB]
Get:29 http://deb.debian.org/debian buster/main amd64 libffi-dev amd64 3.2.1-9 [156 kB]
Get:30 http://deb.debian.org/debian buster/main amd64 libgpm2 amd64 1.20.7-5 [35.1 kB]
Get:31 http://deb.debian.org/debian buster/main amd64 libllvm7 amd64 1:7.0.1-8+deb10u2 [13.1 MB]
Get:32 http://deb.debian.org/debian buster/main amd64 libncurses6 amd64 6.1+20181013-2+deb10u2 [102 kB]
Get:33 http://deb.debian.org/debian buster/main amd64 libpython2.7 amd64 2.7.16-2+deb10u1 [1036 kB]
Get:34 http://deb.debian.org/debian buster/main amd64 liblldb-7 amd64 1:7.0.1-8+deb10u2 [7938 kB]
Get:35 http://deb.debian.org/debian buster/main amd64 libncurses-dev amd64 6.1+20181013-2+deb10u2 [333 kB]
Get:36 http://deb.debian.org/debian buster/main amd64 libtinfo-dev amd64 6.1+20181013-2+deb10u2 [940 B]
Get:37 http://deb.debian.org/debian buster/main amd64 llvm-7-runtime amd64 1:7.0.1-8+deb10u2 [190 kB]
Get:38 http://deb.debian.org/debian buster/main amd64 llvm-7 amd64 1:7.0.1-8+deb10u2 [4554 kB]
Get:39 http://deb.debian.org/debian buster/main amd64 llvm-7-dev amd64 1:7.0.1-8+deb10u2 [21.3 MB]
Get:40 http://deb.debian.org/debian buster/main amd64 python-six all 1.12.0-1 [15.7 kB]
Get:41 http://deb.debian.org/debian buster/main amd64 python-lldb-7 amd64 1:7.0.1-8+deb10u2 [122 kB]
Get:42 http://deb.debian.org/debian buster/main amd64 lldb-7 amd64 1:7.0.1-8+deb10u2 [8459 kB]
Get:43 http://deb.debian.org/debian buster/main amd64 lldb amd64 1:7.0-47 [7176 B]
Get:44 http://deb.debian.org/debian buster/main amd64 manpages-dev all 4.16-2 [2232 kB]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 71.3 MB in 2s (29.9 MB/s)
Selecting previously unselected package libpython2.7-minimal:amd64.
(Reading database ... 9877 files and directories currently installed.)
Preparing to unpack .../00-libpython2.7-minimal_2.7.16-2+deb10u1_amd64.deb ...
Unpacking libpython2.7-minimal:amd64 (2.7.16-2+deb10u1) ...
Selecting previously unselected package python2.7-minimal.
Preparing to unpack .../01-python2.7-minimal_2.7.16-2+deb10u1_amd64.deb ...
Unpacking python2.7-minimal (2.7.16-2+deb10u1) ...
Selecting previously unselected package python2-minimal.
Preparing to unpack .../02-python2-minimal_2.7.16-1_amd64.deb ...
Unpacking python2-minimal (2.7.16-1) ...
Selecting previously unselected package python-minimal.
Preparing to unpack .../03-python-minimal_2.7.16-1_amd64.deb ...
Unpacking python-minimal (2.7.16-1) ...
Selecting previously unselected package mime-support.
Preparing to unpack .../04-mime-support_3.62_all.deb ...
Unpacking mime-support (3.62) ...
Selecting previously unselected package readline-common.
Preparing to unpack .../05-readline-common_7.0-5_all.deb ...
Unpacking readline-common (7.0-5) ...
Selecting previously unselected package libreadline7:amd64.
Preparing to unpack .../06-libreadline7_7.0-5_amd64.deb ...
Unpacking libreadline7:amd64 (7.0-5) ...
Selecting previously unselected package libsqlite3-0:amd64.
Preparing to unpack .../07-libsqlite3-0_3.27.2-3+deb10u1_amd64.deb ...
Unpacking libsqlite3-0:amd64 (3.27.2-3+deb10u1) ...
Selecting previously unselected package libpython2.7-stdlib:amd64.
Preparing to unpack .../08-libpython2.7-stdlib_2.7.16-2+deb10u1_amd64.deb ...
Unpacking libpython2.7-stdlib:amd64 (2.7.16-2+deb10u1) ...
Selecting previously unselected package python2.7.
Preparing to unpack .../09-python2.7_2.7.16-2+deb10u1_amd64.deb ...
Unpacking python2.7 (2.7.16-2+deb10u1) ...
Selecting previously unselected package libpython2-stdlib:amd64.
Preparing to unpack .../10-libpython2-stdlib_2.7.16-1_amd64.deb ...
Unpacking libpython2-stdlib:amd64 (2.7.16-1) ...
Selecting previously unselected package libpython-stdlib:amd64.
Preparing to unpack .../11-libpython-stdlib_2.7.16-1_amd64.deb ...
Unpacking libpython-stdlib:amd64 (2.7.16-1) ...
Setting up libpython2.7-minimal:amd64 (2.7.16-2+deb10u1) ...
Setting up python2.7-minimal (2.7.16-2+deb10u1) ...
Linking and byte-compiling packages for runtime python2.7...
Setting up python2-minimal (2.7.16-1) ...
Selecting previously unselected package python2.
(Reading database ... 10694 files and directories currently installed.)
Preparing to unpack .../python2_2.7.16-1_amd64.deb ...
Unpacking python2 (2.7.16-1) ...
Setting up python-minimal (2.7.16-1) ...
Selecting previously unselected package python.
(Reading database ... 10727 files and directories currently installed.)
Preparing to unpack .../00-python_2.7.16-1_amd64.deb ...
Unpacking python (2.7.16-1) ...
Selecting previously unselected package bzip2.
Preparing to unpack .../01-bzip2_1.0.6-9.2~deb10u1_amd64.deb ...
Unpacking bzip2 (1.0.6-9.2~deb10u1) ...
Selecting previously unselected package libmagic-mgc.
Preparing to unpack .../02-libmagic-mgc_1%3a5.35-4+deb10u1_amd64.deb ...
Unpacking libmagic-mgc (1:5.35-4+deb10u1) ...
Selecting previously unselected package libmagic1:amd64.
Preparing to unpack .../03-libmagic1_1%3a5.35-4+deb10u1_amd64.deb ...
Unpacking libmagic1:amd64 (1:5.35-4+deb10u1) ...
Selecting previously unselected package file.
Preparing to unpack .../04-file_1%3a5.35-4+deb10u1_amd64.deb ...
Unpacking file (1:5.35-4+deb10u1) ...
Selecting previously unselected package manpages.
Preparing to unpack .../05-manpages_4.16-2_all.deb ...
Unpacking manpages (4.16-2) ...
Selecting previously unselected package xz-utils.
Preparing to unpack .../06-xz-utils_5.2.4-1_amd64.deb ...
Unpacking xz-utils (5.2.4-1) ...
Selecting previously unselected package libpipeline1:amd64.
Preparing to unpack .../07-libpipeline1_1.5.1-2_amd64.deb ...
Unpacking libpipeline1:amd64 (1.5.1-2) ...
Selecting previously unselected package lsb-base.
Preparing to unpack .../08-lsb-base_10.2019051400_all.deb ...
Unpacking lsb-base (10.2019051400) ...
Selecting previously unselected package binfmt-support.
Preparing to unpack .../09-binfmt-support_2.2.0-2_amd64.deb ...
Unpacking binfmt-support (2.2.0-2) ...
Selecting previously unselected package libbsd0:amd64.
Preparing to unpack .../10-libbsd0_0.9.1-2_amd64.deb ...
Unpacking libbsd0:amd64 (0.9.1-2) ...
Selecting previously unselected package libc-dev-bin.
Preparing to unpack .../11-libc-dev-bin_2.28-10_amd64.deb ...
Unpacking libc-dev-bin (2.28-10) ...
Selecting previously unselected package linux-libc-dev:amd64.
Preparing to unpack .../12-linux-libc-dev_4.19.160-2_amd64.deb ...
Unpacking linux-libc-dev:amd64 (4.19.160-2) ...
Selecting previously unselected package libc6-dev:amd64.
Preparing to unpack .../13-libc6-dev_2.28-10_amd64.deb ...
Unpacking libc6-dev:amd64 (2.28-10) ...
Selecting previously unselected package libedit2:amd64.
Preparing to unpack .../14-libedit2_3.1-20181209-1_amd64.deb ...
Unpacking libedit2:amd64 (3.1-20181209-1) ...
Selecting previously unselected package libffi-dev:amd64.
Preparing to unpack .../15-libffi-dev_3.2.1-9_amd64.deb ...
Unpacking libffi-dev:amd64 (3.2.1-9) ...
Selecting previously unselected package libgpm2:amd64.
Preparing to unpack .../16-libgpm2_1.20.7-5_amd64.deb ...
Unpacking libgpm2:amd64 (1.20.7-5) ...
Selecting previously unselected package libllvm7:amd64.
Preparing to unpack .../17-libllvm7_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking libllvm7:amd64 (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package libncurses6:amd64.
Preparing to unpack .../18-libncurses6_6.1+20181013-2+deb10u2_amd64.deb ...
Unpacking libncurses6:amd64 (6.1+20181013-2+deb10u2) ...
dSelecting previously unselected package libpython2.7:amd64.
Preparing to unpack .../19-libpython2.7_2.7.16-2+deb10u1_amd64.deb ...
Unpacking libpython2.7:amd64 (2.7.16-2+deb10u1) ...
irSelecting previously unselected package liblldb-7.
Preparing to unpack .../20-liblldb-7_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking liblldb-7 (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package libncurses-dev:amd64.
Preparing to unpack .../21-libncurses-dev_6.1+20181013-2+deb10u2_amd64.deb ...
Unpacking libncurses-dev:amd64 (6.1+20181013-2+deb10u2) ...
Selecting previously unselected package libtinfo-dev:amd64.
Preparing to unpack .../22-libtinfo-dev_6.1+20181013-2+deb10u2_amd64.deb ...
Unpacking libtinfo-dev:amd64 (6.1+20181013-2+deb10u2) ...
Selecting previously unselected package llvm-7-runtime.
Preparing to unpack .../23-llvm-7-runtime_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking llvm-7-runtime (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package llvm-7.
Preparing to unpack .../24-llvm-7_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking llvm-7 (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package llvm-7-dev.
Preparing to unpack .../25-llvm-7-dev_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking llvm-7-dev (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package python-six.
Preparing to unpack .../26-python-six_1.12.0-1_all.deb ...
Unpacking python-six (1.12.0-1) ...
Selecting previously unselected package python-lldb-7.
Preparing to unpack .../27-python-lldb-7_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking python-lldb-7 (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package lldb-7.
Preparing to unpack .../28-lldb-7_1%3a7.0.1-8+deb10u2_amd64.deb ...
Unpacking lldb-7 (1:7.0.1-8+deb10u2) ...
Selecting previously unselected package lldb.
Preparing to unpack .../29-lldb_1%3a7.0-47_amd64.deb ...
Unpacking lldb (1:7.0-47) ...
Selecting previously unselected package manpages-dev.
Preparing to unpack .../30-manpages-dev_4.16-2_all.deb ...
Unpacking manpages-dev (4.16-2) ...
Setting up libpipeline1:amd64 (1.5.1-2) ...
Setting up lsb-base (10.2019051400) ...
Setting up libgpm2:amd64 (1.20.7-5) ...
Setting up mime-support (3.62) ...
Setting up libmagic-mgc (1:5.35-4+deb10u1) ...
Setting up manpages (4.16-2) ...
Setting up libsqlite3-0:amd64 (3.27.2-3+deb10u1) ...
Setting up libmagic1:amd64 (1:5.35-4+deb10u1) ...
Setting up linux-libc-dev:amd64 (4.19.160-2) ...
Setting up file (1:5.35-4+deb10u1) ...
Setting up bzip2 (1.0.6-9.2~deb10u1) ...
Setting up libffi-dev:amd64 (3.2.1-9) ...
Setting up libncurses6:amd64 (6.1+20181013-2+deb10u2) ...
Setting up xz-utils (5.2.4-1) ...
update-alternatives: using /usr/bin/xz to provide /usr/bin/lzma (lzma) in auto mode
update-alternatives: warning: skip creation of /usr/share/man/man1/lzma.1.gz because associated file /usr/share/man/man1/xz.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/unlzma.1.gz because associated file /usr/share/man/man1/unxz.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzcat.1.gz because associated file /usr/share/man/man1/xzcat.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzmore.1.gz because associated file /usr/share/man/man1/xzmore.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzless.1.gz because associated file /usr/share/man/man1/xzless.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzdiff.1.gz because associated file /usr/share/man/man1/xzdiff.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzcmp.1.gz because associated file /usr/share/man/man1/xzcmp.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzgrep.1.gz because associated file /usr/share/man/man1/xzgrep.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzegrep.1.gz because associated file /usr/share/man/man1/xzegrep.1.gz (of link group lzma) doesn't exist
update-alternatives: warning: skip creation of /usr/share/man/man1/lzfgrep.1.gz because associated file /usr/share/man/man1/xzfgrep.1.gz (of link group lzma) doesn't exist
Setting up binfmt-support (2.2.0-2) ...
invoke-rc.d: could not determine current runlevel
invoke-rc.d: policy-rc.d denied execution of start.
Setting up libc-dev-bin (2.28-10) ...
Setting up libbsd0:amd64 (0.9.1-2) ...
Setting up readline-common (7.0-5) ...
Setting up libreadline7:amd64 (7.0-5) ...
Setting up manpages-dev (4.16-2) ...
Setting up libedit2:amd64 (3.1-20181209-1) ...
Setting up libpython2.7-stdlib:amd64 (2.7.16-2+deb10u1) ...
Setting up libllvm7:amd64 (1:7.0.1-8+deb10u2) ...
Setting up libc6-dev:amd64 (2.28-10) ...
Setting up libpython2.7:amd64 (2.7.16-2+deb10u1) ...
Setting up libncurses-dev:amd64 (6.1+20181013-2+deb10u2) ...
Setting up llvm-7-runtime (1:7.0.1-8+deb10u2) ...
Setting up python2.7 (2.7.16-2+deb10u1) ...
Setting up llvm-7 (1:7.0.1-8+deb10u2) ...
Setting up libpython2-stdlib:amd64 (2.7.16-1) ...
Setting up python2 (2.7.16-1) ...
Setting up libpython-stdlib:amd64 (2.7.16-1) ...
Setting up python (2.7.16-1) ...
Setting up libtinfo-dev:amd64 (6.1+20181013-2+deb10u2) ...
Setting up liblldb-7 (1:7.0.1-8+deb10u2) ...
Setting up llvm-7-dev (1:7.0.1-8+deb10u2) ...
Setting up python-six (1.12.0-1) ...
Setting up python-lldb-7 (1:7.0.1-8+deb10u2) ...
Setting up lldb-7 (1:7.0.1-8+deb10u2) ...
Setting up lldb (1:7.0-47) ...
Processing triggers for libc-bin (2.28-10) ...

dotnet tool install --global dotnet-sos

Tools directory '/root/.dotnet/tools' is not currently on the PATH environment variable.
If you are using bash, you can add it to your profile by running the following command:

cat << \EOF >> ~/.bash_profile
# Add .NET Core SDK tools
export PATH="$PATH:/root/.dotnet/tools"
EOF

You can add it to the current session by running the following command:

export PATH="$PATH:/root/.dotnet/tools"

You can invoke the tool using the following command: dotnet-sos
Tool 'dotnet-sos' (version '5.0.160202') was successfully installed.

/root/.dotnet/tools/dotnet-sos install

Installing SOS to /root/.dotnet/sos from /root/.dotnet/tools/.store/dotnet-sos/5.0.160202/dotnet-sos/5.0.160202/tools/netcoreapp2.1/any/linux-x64
Creating installation directory...
Copying files...
Creating new /root/.lldbinit file - LLDB will load SOS automatically at startup
SOS install succeeded

Project configuration

Okay. Now we can create new project with dotnet new console -lang C# makeref, enter the directory and modify the csproj file:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net5.0</TargetFramework>
    <AllowUnsafeBlocks>true</AllowUnsafeBlocks>
  </PropertyGroup>

</Project>

Notice that I added AllowUnsafeBlocks to enable unsafe code (which we already know is not needed but just to keep it simple).

Application

Finally, the application code:

using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Reflection;


namespace HijackingNewOperatorNetCore
{
    class Program
    {
        static void Main(string[] args)
        {
            var allocator = new GenericMemoryAllocator();

            // Allocate object through allocator
            var customlyAlocated = allocator.Allocate<TestClass>();
            // Allocate ordinary object
            var ordinary = new object();

            // Hijack method and allocate object
            HijackNew();
            System.Diagnostics.Debugger.Break();
            var hijacked = new object();

            // Observe that hijacked objects are in generation 2
            Console.WriteLine($"Object customly allocated by hand: {GC.GetGeneration(customlyAlocated)}");
            Console.WriteLine($"Object created normally: {GC.GetGeneration(ordinary)}");
            Console.WriteLine($"Object with hijacked newobj: {GC.GetGeneration(hijacked)}");
        }

        public static void HijackNew()
        {
            var methodHandle = typeof(GenericMemoryAllocator).GetMethod(nameof(GenericMemoryAllocator.RawAllocate)).MethodHandle;
            RuntimeHelpers.PrepareMethod(methodHandle);

            var myAllocAddress = Marshal.ReadIntPtr(methodHandle.Value, 8);
            var defaultAllocAddress = GenericMemoryAllocator.GetAllocMethodAddress();


            int offset = (int)((long)myAllocAddress - defaultAllocAddress - 4 - 1); // 4 bytes for relative address and one byte for opcode
            byte[] instruction = {
                0xE9, // Long jump instruction
                (byte)(offset & 0xFF),
                (byte)((offset >> 8) & 0xFF),
                (byte)((offset >> 16) & 0xFF),
                (byte)((offset >> 24) & 0xFF)
            };

            GenericMemoryAllocator.UnlockPage((IntPtr)defaultAllocAddress);
            Marshal.Copy(instruction, 0, (IntPtr)defaultAllocAddress, instruction.Length);
        }
    }

    class TestClass
    {
        public int a, b, c, d;
    }
}

namespace HijackingNewOperatorNetCore
{
    class GenericMemoryAllocator
    {
        public T Allocate<T>()
        {
            var methodTable = typeof(T).TypeHandle.Value; // Get handle to the method table
            RawAllocate(methodTable); // Allocate the object and set the field, also JIT-compile the method
            return (T)Dummy;
        }

        // Method needs to be static in order to maintain the calling convention
        public static unsafe IntPtr RawAllocate(IntPtr methodTable)
        {
            // Calculate the object size by extracting it from method table and dividing by int size.
            // We assume that the size starts 4 bytes after the beginning of method table (works from .NET 3.5 to .NET Core 3.1)
            int objectSize = Marshal.ReadInt32(methodTable, 4) / sizeof(int);
            // Skip sizeof(int) bytes for syncblock
            _currentOffset++;
            // Write the address to method table
            Memory[_currentOffset] = methodTable;

            // Get the handle for the newly created object
            TypedReference newObjectReference = __makeref(Dummy);
            // Get the handle for the memory
            TypedReference memoryReference = __makeref(Memory);
            // Calculate the address of  the spawned object. We need to add 2 since we need to skip the method table of the array and the array size
            var spawnedObjectAddress = *(IntPtr*)*(IntPtr*)&memoryReference + (_currentOffset + 2) * sizeof(IntPtr);

            // Modify the handle for the new object using the address of the existing memory
            *(IntPtr*)*(IntPtr*)&newObjectReference = spawnedObjectAddress;

            // Move within the memory
            _currentOffset += objectSize;

            return *(IntPtr*)*(IntPtr*)&newObjectReference;
        }

        // Fields needs to be static in order to be accessible from RawAllocate
        private static bool Is64 = IntPtr.Size == sizeof(long);
        // Array big enough to be stored in Generation 2
        private static IntPtr[] Memory = new IntPtr[102400];
        private static int _currentOffset;
        private static object Dummy = new object();

        // This method is used to find the address of the CLR allocation function
        [MethodImpl(MethodImplOptions.NoOptimization)]
        private void CreateObject()
        {
            new object();
        }

        public static long GetAllocMethodAddress()
        {
            // Get the handle to the method creating the object
            var methodHandle = typeof(GenericMemoryAllocator).GetMethod(nameof(CreateObject), BindingFlags.NonPublic | BindingFlags.Instance).MethodHandle;

            // JIT-compile methods
            RuntimeHelpers.PrepareMethod(methodHandle);

            // Get the address of the jitted method
            IntPtr methodAddress = Marshal.ReadIntPtr(methodHandle.Value, 16);

            // Call to internal function differs between architectures, builds etc
            int offset = 51;

            // Read the jump offset
            int jumpOffset = 0;
            for (int i = 1; i < 5; ++i)
            {
                jumpOffset = jumpOffset + (Marshal.ReadByte(methodAddress, offset + i) << (i - 1) * 8);
            }
            // Calculate the absolute address
            long absoluteAddress = (long)methodAddress + offset + jumpOffset + 1 + 4; // 1 byte for jmp instruction, 4 bytes for relative address

            return absoluteAddress;
        }

        // Method to unlock the page for executing
        [DllImport("libc", SetLastError = true)]
        static extern int mprotect(IntPtr lpAddress, uint dwSize, uint flags);

        // Unlocks the page for executing
        public static void UnlockPage(IntPtr address)
        {
              long newAddress = ((long)address) & (long)(~0 << 12);
              IntPtr na = (IntPtr)newAddress;
              long length = ((long)address) + 6 - newAddress;
              // 1 for read, 2 for write, 4 for execute
              mprotect(na, (uint)length, 1 | 2 | 4);
        }
    }
}

This should look familiar to you. There are three main differences from Windows solution.

First, the CreateObject method in line 107 is now assembled differently. Machine code looks like this (and let’s see lldb in action at the same time):

dotnet --version

5.0.101

dotnet build

Microsoft (R) Build Engine version 16.8.0+126527ff1 for .NET
Copyright (C) Microsoft Corporation. All rights reserved.

  Determining projects to restore...
  All projects are up-to-date for restore.
/makeref/makeref/Program.cs(56,26): warning CS0649: Field 'TestClass.c' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,23): warning CS0649: Field 'TestClass.b' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,20): warning CS0649: Field 'TestClass.a' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,29): warning CS0649: Field 'TestClass.d' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
  makeref -> /makeref/makeref/bin/Debug/net5.0/makeref.dll

Build succeeded.

/makeref/makeref/Program.cs(56,26): warning CS0649: Field 'TestClass.c' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,23): warning CS0649: Field 'TestClass.b' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,20): warning CS0649: Field 'TestClass.a' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
/makeref/makeref/Program.cs(56,29): warning CS0649: Field 'TestClass.d' is never assigned to, and will always have its default value 0 [/makeref/makeref/makeref.csproj]
    4 Warning(s)
    0 Error(s)

Time Elapsed 00:00:04.77

lldb bin/Debug/net5.0/makeref

(lldb) target create "bin/Debug/net5.0/makeref"
Current executable set to 'bin/Debug/net5.0/makeref' (x86_64).

r

(lldb) r
Process 1181 launched: '/makeref/makeref/bin/Debug/net5.0/makeref' (x86_64)
Process 1181 stopped
* thread #1, name = 'makeref', stop reason = signal SIGTRAP
    frame #0: 0x00007ffff73ee1ed libcoreclr.so`___lldb_unnamed_symbol15306$$libcoreclr.so + 1
libcoreclr.so`___lldb_unnamed_symbol15306$$libcoreclr.so:
->  0x7ffff73ee1ed <+1>: retq
    0x7ffff73ee1ee <+2>: nop

libcoreclr.so`___lldb_unnamed_symbol15307$$libcoreclr.so:
    0x7ffff73ee1f0 <+0>: pushq  %rbp
    0x7ffff73ee1f1 <+1>: movq   0xd8(%rdi), %r12

sos Name2EE makeref.dll HijackingNewOperatorNetCore.GenericMemoryAllocator.CreateObject

(lldb) sos Name2EE makeref.dll HijackingNewOperatorNetCore.GenericMemoryAllocator.CreateObject
Module:      00007fff7de42788
Assembly:    makeref.dll
Token:       0000000006000007
MethodDesc:  00007fff7deb6ea0
Name:        HijackingNewOperatorNetCore.GenericMemoryAllocator.CreateObject()
JITTED Code Address: 00007fff7dda9030

sos u 00007fff7dda9030

(lldb) sos u 00007fff7dda9030
Normal JIT generated code
HijackingNewOperatorNetCore.GenericMemoryAllocator.CreateObject()
ilAddr is 00007FFFF3D4F463 pImport is 00000000014B3BF0
Begin 00007FFF7DDA9030, size 4d

/makeref/makeref/Program.cs @ 113:
>>> 00007fff7dda9030 55                   push    rbp
00007fff7dda9031 4883ec10             sub     rsp, 0x10
00007fff7dda9035 488d6c2410           lea     rbp, [rsp + 0x10]
00007fff7dda903a 33c0                 xor     eax, eax
00007fff7dda903c 488945f0             mov     qword ptr [rbp - 0x10], rax
00007fff7dda9040 48897df8             mov     qword ptr [rbp - 0x8], rdi
00007fff7dda9044 48b8082ce47dff7f0000 movabs  rax, 0x7fff7de42c08
00007fff7dda904e 833800               cmp     dword ptr [rax], 0x0
00007fff7dda9051 7405                 je      0x7fff7dda9058
00007fff7dda9053 e828213879           call    0x7ffff712b180 (JitHelp: CORINFO_HELP_DBG_IS_JUST_MY_CODE)
00007fff7dda9058 90                   nop

/makeref/makeref/Program.cs @ 114:
00007fff7dda9059 48bf000cd67dff7f0000 movabs  rdi, 0x7fff7dd60c00
00007fff7dda9063 e8c8953779           call    0x7ffff7122630 (HijackingNewOperatorNetCore.GenericMemoryAllocator.RawAllocate(IntPtr), mdToken: 0000000006000006)
00007fff7dda9068 488945f0             mov     qword ptr [rbp - 0x10], rax
00007fff7dda906c 488b7df0             mov     rdi, qword ptr [rbp - 0x10]
00007fff7dda9070 e81370feff           call    0x7fff7dd90088 (System.Object..ctor(), mdToken: 000000000600045E)
00007fff7dda9075 90                   nop

/makeref/makeref/Program.cs @ 115:
00007fff7dda9076 90                   nop
00007fff7dda9077 488d6500             lea     rsp, [rbp]
00007fff7dda907b 5d                   pop     rbp
00007fff7dda907c c3                   ret

If you count all bytes you’ll find out that the offset is now 51.

Second difference is the method descriptor. Function address used to be 8 bytes from the beginning, now it’s 16 (in line 121):

memory read -count 64 00007fff7deb6ea0

(lldb) memory read -count 64 00007fff7deb6ea0
0x7fff7deb6ea0: 07 00 08 03 08 00 28 00 28 5b da 7d ff 7f 00 00  ......(.([.}....
0x7fff7deb6eb0: 30 90 da 7d ff 7f 00 00 08 00 0b 03 09 00 a8 00  0..}............
0x7fff7deb6ec0: 30 5b da 7d ff 7f 00 00 80 8a da 7d ff 7f 00 00  0[.}.......}....
0x7fff7deb6ed0: 09 00 0e 03 0a 00 8a 00 00 00 00 00 00 00 00 00  ................

Finally, we cannot use VirtualProtectEx anymore as we’re on Linux. We need to go with mprotect:

[DllImport("libc", SetLastError = true)]
static extern int mprotect(IntPtr lpAddress, uint dwSize, uint flags);

public static void UnlockPage(IntPtr address)
{
	  long newAddress = ((long)address) & (long)(~0 << 12);
	  IntPtr na = (IntPtr)newAddress;
	  long length = ((long)address) + 6 - newAddress;
	  // 1 for read, 2 for write, 4 for execute
	  mprotect(na, (uint)length, 1 | 2 | 4);
}

mprotect requires the address to be aligned to a page boundary (which is 4096 bytes on my machine) so I clear lowest 12 bits (line 6 in the listing above). Next, I calculate new offset of the method (I’m actually not sure if that’s needed). Finally, I enable all permissions for the page in line 10.

And just for the sake of completeness, final output:

dotnet run

Object customly allocated by hand: 2
Object created normally: 0
Object with hijacked newobj: 2

Final notes

As you can see, there is no magic in this approach, it’s just a bunch of bytes which we can modify in the same way as long as we’re on the same architecture. However, keep in mind the following:

  • I do not recommend using this in production code. I do use things like these in real applications but this is always risky and requires good understanding of all internals
  • This is just one of multiple allocation methods provided by .NET. If you want it to be “production ready” then you need to update all of them
  • Since you override the method globally, you can’t control easily when it’s called. In other words, .NET will use your logic as well so you need to take care of all memory management (or do some fancy juggling to call .NET methods when you actually need to allocate some new memory)
  • Keep in mind that .NET scans the heap and requires it to be parseable. Be careful with what you allocate and how. Also, make sure your objects are pinned or that you have good concurrency management (since GC can kick in anytime and move objects around)

Have fun!

]]>
https://blog.adamfurmanek.pl/2021/09/25/custom-memory-allocation-in-c-part-16/feed/ 1
Custom memory allocation in C# Part 15 — Allocating object on a stack without unsafe https://blog.adamfurmanek.pl/2021/03/06/custom-memory-allocation-in-c-part-15/ https://blog.adamfurmanek.pl/2021/03/06/custom-memory-allocation-in-c-part-15/#respond Sat, 06 Mar 2021 09:00:37 +0000 https://blog.adamfurmanek.pl/?p=3789 Continue reading Custom memory allocation in C# Part 15 — Allocating object on a stack without unsafe]]>

This is the fifteenth part of the Custom memory allocation series. For your convenience you can find other parts in the table of contents in Part 1 — Allocating object on a stack

Last time we saw how to do unsafe operations without the unsafe keyword. This time we’ll allocate some reference type on a stack in a similar manner.

Let’s this code:

using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

namespace Makeref_Safe_OnStack
{
    public class Program
	{
		public static void Main(string[] args)
		{
			Structure structure = new Structure();
			structure.syncBlock = 0xBADF00D;
			structure.methodHandle = 0xBADF00D;
			structure.field = 0xBADF00D;

			var method = typeof(Program).GetMethod("GetStackAddress", System.Reflection.BindingFlags.Static | System.Reflection.BindingFlags.NonPublic);
			RuntimeHelpers.PrepareMethod(method.MethodHandle);
			var codeAddress = method.MethodHandle.GetFunctionPointer();

			Console.WriteLine(codeAddress.ToString("X"));

			Marshal.Copy(addressGetter, 0, codeAddress, addressGetter.Length);

			var structureAddress = GetStackAddress() + 132;
			Console.WriteLine(structureAddress.ToString("X"));

			structure.syncBlock = 0;
			structure.methodHandle = (int)typeof(Klass).TypeHandle.Value;
			structure.field = 123;

			Holder<Klass> holder = new Holder<Klass>();
			GCHandle holderHandle = GCHandle.Alloc(holder);
			var holderAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(holderHandle));
			Marshal.WriteIntPtr(holderAddress, 4, structureAddress + 4); // Skip first integer for sync block, assumes x86

			Console.WriteLine(holder.reference.GetType());
			Console.WriteLine(holder.reference.Field);

			structure.field = 456;
			Console.WriteLine(holder.reference.Field);
		}

		static byte[] addressGetter = new byte[] 
		{
			0x89, 0xE0, // mov eax, esp
			0xC3        // ret
		};

		static IntPtr GetStackAddress()
		{
			Console.WriteLine("Some dummy code to be replaced");
			return IntPtr.Zero;
		}
	}

	class Holder<T>
	{
		public T reference;
	}

	class Klass
	{
		public int Field;
	}

	struct Structure
	{
		public int syncBlock;
		public int methodHandle;
		public int field;
	}
}

In line 43 we have a machine code for getting the esp register. In line 22 we modify the GetStackAddress method with our machine code.

We allocate some structure on the stack which we’ll later override with a reference type. We do it in line 34.

Finally, you can see how we take type in line 36 and then modify reference instance field by using structure. This confirms the object is exactly in the stack.

Output:

438F1F0
88BE8E0
Makeref_Safe_OnStack.Klass
123
456

]]>
https://blog.adamfurmanek.pl/2021/03/06/custom-memory-allocation-in-c-part-15/feed/ 0
Custom memory allocation in C# Part 14 — Unsafe code without unsafe keyword https://blog.adamfurmanek.pl/2021/02/27/custom-memory-allocation-in-c-part-14/ https://blog.adamfurmanek.pl/2021/02/27/custom-memory-allocation-in-c-part-14/#comments Sat, 27 Feb 2021 09:00:32 +0000 https://blog.adamfurmanek.pl/?p=3784 Continue reading Custom memory allocation in C# Part 14 — Unsafe code without unsafe keyword]]>

This is the fourteenth part of the Custom memory allocation series. For your convenience you can find other parts in the table of contents in Part 1 — Allocating object on a stack

This whole series is about unsafe operations and manual memory managing. However, all the things I’ve shown can be done with no unsafe keyword at all and no TypedReference instances. Let’s start with getting an instance address:

using System;
using System.Runtime.InteropServices;

namespace Makeref_Safe
{
	class Program
	{
		static void Main(string[] args)
		{
			int[] array = new int[20];

			array[1] = (int)typeof(Klass).TypeHandle.Value;
			array[2] = 123;

			GCHandle arrayHandle = GCHandle.Alloc(array);
			var arrayAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(arrayHandle));

			Holder<Klass> holder = new Holder<Klass>();
			GCHandle holderHandle = GCHandle.Alloc(holder);
			var holderAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(holderHandle));
			Marshal.WriteIntPtr(holderAddress, 4, arrayAddress + 3 * 4); // Skip Method Handle, array size, first integer for sync block, assumes x86

			Console.WriteLine(holder.reference.GetType());
			Console.WriteLine(holder.reference.Field);
			array[2] = 456;
			Console.WriteLine(holder.reference.Field);
		}
	}

	class Holder<T>
	{
		public T reference;
	}

	class Klass
	{
		public int Field;
	}
}

You can see the output:

Klass
123
456

So you can see that I’m able to get the object address and use it to modify anything in place. Whereas with TypedReference we could modify any reference directly, this time we need to wrap it with some holder to get another level of indirection. However, the concept is exactly the same.

What about implementing the UnsafeList in the safe way?

using System.Runtime.InteropServices;

namespace UnsafeList
{
    public class SafeList<T> where T : class
    {
        private readonly int _elementSize;
        private T _target;
        private int[] _storage;
        private int _currentIndex = -1;
        private Holder<T> holder = new Holder<T>();
        GCHandle storageHandle;
        GCHandle holderHandle;

        public SafeList(int size, int elementSize)
        {
            _elementSize = elementSize;
            _storage = new int[size * _elementSize];
            _target = default(T);
            storageHandle = GCHandle.Alloc(_storage);
            holderHandle = GCHandle.Alloc(holder);
        }

        public int Add(T item)
        {
            _currentIndex++;

            GCHandle handle = GCHandle.Alloc(item);
            var itemAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(handle)) - 4; // Assumes 86
            handle.Free();

            for (int i = 1; i < _elementSize; ++i)
            {
                _storage[_currentIndex*_elementSize + i] = Marshal.ReadInt32(itemAddress + i * 4);
            }


            return _currentIndex;
        }

        public T GetInternal(int index)
        {
            var storageAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(storageHandle));
            var holderAddress = Marshal.ReadIntPtr(GCHandle.ToIntPtr(holderHandle));

            Marshal.WriteIntPtr(holderAddress, 4, storageAddress + 2 * 4 + index * _elementSize * 4 + 4); // Skip 2*4 for Method Handle and array size, index * _elementSize * 4 for elements, 4 for sync block

            return holder.reference;
        }

        public T Get(int index)
        {
            return GetInternal(index);
        }

        public void Free()
        {
            storageHandle.Free();
            holderHandle.Free();
        }
    }

    class Holder<T>
    {
        public T reference;
    }
}

Exactly the same principles. However, this time we can benchmark it in Dotnetfiddle:

------------------------
Array
Insertion time: 8
Sum: -1610778624
Calculation time: 4
Array
Insertion time: 20
Sum: -1610778624
Calculation time: 4
Array
Insertion time: 32
Sum: -1610778624
Calculation time: 3
------------------------
List
Insertion time: 7
Sum: -1610778624
Calculation time: 3
List
Insertion time: 16
Sum: -1610778624
Calculation time: 3
List
Insertion time: 42
Sum: -1610778624
Calculation time: 3
------------------------
SafeList
Insertion time: 55
Sum: -1610778624
Calculation time: 12
SafeList
Insertion time: 54
Sum: -1610778624
Calculation time: 10
SafeList
Insertion time: 68
Sum: -1610778624
Calculation time: 10

We know from previous parts that UnsafeList was faster with huge number of elements. Here we have only 100k and we can see the UnsafeList implemented in a “safe way” is way slower. My output for 20kk elements:

------------------------
Array
Insertion time: 3412
Sum: -1023623168
Calculation time: 109
Array
Insertion time: 3437
Sum: -1023623168
Calculation time: 114
Array
Insertion time: 3441
Sum: -1023623168
Calculation time: 108
------------------------
List
Insertion time: 3310
Sum: -1023623168
Calculation time: 148
List
Insertion time: 3563
Sum: -1023623168
Calculation time: 118
List
Insertion time: 3413
Sum: -1023623168
Calculation time: 148
------------------------
UnsafeList
Insertion time: 1184
Sum: -1023623168
Calculation time: 174
UnsafeList
Insertion time: 1304
Sum: -1023623168
Calculation time: 210
UnsafeList
Insertion time: 1278
Sum: -1023623168
Calculation time: 177
------------------------
SafeList
Insertion time: 6714
Sum: -1023623168
Calculation time: 573
SafeList
Insertion time: 7168
Sum: -1023623168
Calculation time: 584
SafeList
Insertion time: 6746
Sum: -1023623168
Calculation time: 593

So you can see that the UnsafeList is faster (~1 second versus ~3.5). SafeList on the other hand is much slower (almost 7 seconds). However, no unsafe keyword.

]]>
https://blog.adamfurmanek.pl/2021/02/27/custom-memory-allocation-in-c-part-14/feed/ 1
Types and Programming Languages Part 5 – Sleeping and measuring time https://blog.adamfurmanek.pl/2021/02/13/types-and-programming-languages-part-5/ https://blog.adamfurmanek.pl/2021/02/13/types-and-programming-languages-part-5/#comments Sat, 13 Feb 2021 09:00:27 +0000 https://blog.adamfurmanek.pl/?p=3761 Continue reading Types and Programming Languages Part 5 – Sleeping and measuring time]]>

This is the fifth part of the Types and Programming Languages series. For your convenience you can find other parts in the table of contents in Part 1 — Do not return in finally

How do you sleep in your application? There are multiple solutions, most of the times similar to Thread.Sleep which synchronously blocks the thread or Thread.SleepAsync which returns a promise to indicate when the given time passed.

What they have in common is they are based on the wall clock. And while it makes sense and is simple to understand, we need to keep in mind it’s not the only “sleeping” we can imagine. Instead of sleeping for a “real time passing by” we may want to sleep for “time consumed by our application”. Is there a difference? Let’s take this C# code:

using System;
using System.Diagnostics;
using System.Threading;

namespace ThreadSleepRuntime
{
	class Program
    {
        static void Main(string[] args)
        {
			Thread workerThread = new Thread(() =>
			{
				try
				{
					while (true)
					{
						for (int i = 0; i < 1000000; ++i) { }
						Thread.Sleep(1);
					}
				}catch(Exception e)
				{
					Console.WriteLine(e);
				}
			});
			workerThread.Name = "Custom sleeping thread";

			var sleepTime = TimeSpan.FromSeconds(1);



			Console.WriteLine($"Start: {DateTime.UtcNow}");
			Console.WriteLine($"Start work time: {GetCurrentTimes()}");

			workerThread.Start();
			Thread.Sleep(sleepTime);


			Console.WriteLine($"End: {DateTime.UtcNow}");
			Console.WriteLine($"End work time: {GetCurrentTimes()}");

			Environment.Exit(0);
		}

		private static TimeSpan GetCurrentTimes()
		{
			TimeSpan currentTimes = new TimeSpan();

			ProcessThreadCollection currentThreads = Process.GetCurrentProcess().Threads;

			foreach (ProcessThread thread in currentThreads)
			{
				currentTimes += thread.TotalProcessorTime;
			}

			return currentTimes;
		}
	}
}

We create a thread which does some busy loop and then sleeps physically for a millisecond. In the main thread we measure not only the wall clock time but also the time consumed by all threads in the application. Sample results:

Start: 8/18/2020 12:25:46 AM
Start work time: 00:00:00.0312500
End: 8/18/2020 12:25:47 AM
End work time: 00:00:00.3281250

You can see that we waited for a second but actual work time was around 300 milliseconds. Can we do better?

We can, let’s take this function:

private static void WorkSleep(TimeSpan timeout)
{
	TimeSpan start = GetCurrentTimes();
	TimeSpan howMuchLeft = timeout;

	while(howMuchLeft > TimeSpan.Zero)
	{
		Thread.Sleep(timeout);
		howMuchLeft = timeout - (GetCurrentTimes() - start);
	}
}

So we take current times and then sleep for long enough (possibly many times). Output:

Start: 8/18/2020 12:29:37 AM
Start work time: 00:00:00.0468750
End: 8/18/2020 12:29:39 AM
End work time: 00:00:01.0625000

This time you can see that we physically slept for 2 seconds while our threads worked for around 1016 milliseconds.

And this is just the beginning — we used only one worker thread. What if we create many of them?

ThreadStart lambda = () =>
{
	try
	{
		while (true)
		{
			for (int i = 0; i 
{
	Thread workerThread = new Thread(lambda);
	workerThread.Name = $"Custom sleeping thread {i}";
	workerThread.Start();
	return workerThread;
}).ToArray();

WorkSleep(sleepTime);

Start: 8/18/2020 12:31:38 AM
Start work time: 00:00:00.2812500
End: 8/18/2020 12:31:39 AM
End work time: 00:00:04.2812500

So this time we slept for a physical second but we actually did 4 seconds of work. Let’s try this one:

private static void WorkSleepParallel(TimeSpan timeout)
{
	TimeSpan start = GetCurrentTimes();
	TimeSpan howMuchLeft = timeout;

	while (howMuchLeft > TimeSpan.Zero)
	{
		Thread.Sleep((int)(timeout.TotalMilliseconds / Process.GetCurrentProcess().Threads.Count));
		howMuchLeft = timeout - (GetCurrentTimes() - start);
	}
}

This time we divide the time by threads count to “not oversleep”. However, we get this:

Start: 8/18/2020 12:34:15 AM
Start work time: 00:00:00.1718750
End: 8/18/2020 12:34:15 AM
End work time: 00:00:01.4687500

So we worked for 1300 thread milliseconds but actually 0 seconds of the wall clock time!

And here we come to another important thing: it’s hard to measure time with high precision. Method I presented above relies on GetThreadTimes function which is known for low precision. There are other solutions like QueryThreadCycleTime based on QueryPerformanceCounter. And it’s important to understand that these things are very hardware dependent.

However, there is yet another issue — what does it mean to “measure the time” for a multithreaded algorithm? Are we interested in the “wall clock” time from start till the end or maybe the actual “threads time” spent on working? And these methods give different results.

It’s no surprise that benchmarking libraries do a lot of black magic, like measuring CPU frequency (which changes over time) increasing the frequency forcefully (by running empty loops), or just execute the same thing many times to make sure noise is minimized. It’s not simple.

]]>
https://blog.adamfurmanek.pl/2021/02/13/types-and-programming-languages-part-5/feed/ 1