
Testing on a Large Scale
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

TESTING ON A LARGE SCALE - ADAM FURMANEK22.06.2024 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 2

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda
Do we need tests?

How to do software to make testing easier.

How to keep tests maintainable.

How to test different domains.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 3

Do we need tests?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 4

Sure we do!
But we don’t test standard libraries. Why?

But we don’t have 100% code coverage. Why?

But we often decide to drop UI tests. Why?

But we mock external components, and run test suites that test everything but the production
code. Why?

But we don’t test edge cases like faulty memory, broken network packets, or cosmic ray. Why?

But we don’t test „obvious” things like getters or setters. Why?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 5

Reality
50%-80% of product’s functionality is used rarely
or never

◦ According to The Standish Group

◦ https://www.mountaingoatsoftware.com/blog/are-
64-of-features-really-rarely-or-never-used

Without a proper process, cost and time can
double over the lifecycle of a project

◦ https://www.cin.ufpe.br/~gmp/docs/papers/extre
me_chaos2001.pdf

Knight Capital Group
◦ Repurposed bit flag caused a loss of $440M in 45 minutes

◦ https://en.wikipedia.org/wiki/Knight_Capital_Group

Mariner 1
◦ Due to incorrect equation caused by missing bar, the spacecraft had

to be destroyed

◦ https://en.wikipedia.org/wiki/Mariner_1#Cause_of_the_malfunction

Belgium elections
◦ Cosmic ray increased numer of votes by 4096

◦ https://en.wikipedia.org/wiki/Electronic_voting_in_Belgium

Therac-25
◦ At least 6 patients were given massive overdoses of radiation because

of a race condition

◦ https://en.wikipedia.org/wiki/Therac-25#Problem_description

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 6

https://www.mountaingoatsoftware.com/blog/are-64-of-features-really-rarely-or-never-used
https://www.cin.ufpe.br/~gmp/docs/papers/extreme_chaos2001.pdf
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://en.wikipedia.org/wiki/Mariner_1#Cause_of_the_malfunction
https://en.wikipedia.org/wiki/Electronic_voting_in_Belgium
https://en.wikipedia.org/wiki/Therac-25#Problem_description

It’s all about the costs!
WE DON’T CREATE SOFTWARE JUST FOR THE SAKE OF CREATING IT!

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 7

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 8

Tests
cost

Software
error cost

PROBABILITY

A tale of two perfect programmers
PROGRAMMER NO 1

✔ Never makes mistakes.

✔ Writes code meeting all the
business requirements.

❔ Runs tests after writing a
single line of code.

PROGRAMMER NO 2

✔ Never makes mistakes.

✔ Writes code meeting all the
business requirements.

❔ Never runs tests.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 9

Who is „better”?

Real world
We are not perfect, but it’s about making trivial change as big as possible

◦ It’s a matter of experience, skills, and tools

We often don’t need to run tests after writing small amount of code.

We’re often not working on a critical piece of software.

We need to find a balance between „making sure we don’t deliver a faulty software” and
„taking the toll of delivering a faulty software”.

We work in fast-paced environments. People come and go. They have different backgrounds,
skills, priorities.

Environment changes. Libraries get security updates, hosts are deprecated and not supported,
bugs are introduced. We need to test integration points between everything, even standard
libraries.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 10

Making things testable

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 11

3 aspects of developer
experience

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 12

First aspect of DX
Be able to run locally and while offline
I want to run all software locally and with no Internet connectivity

◦ Databases, queues, service buses, authorization systems, external dependencies

I want to run all the tests locally
◦ Unit tests, integration tests, comparison tests, performance tests, hardware tests

I don’t want to be forced to do it all locally
◦ Dev environments, pre-prod environments

◦ Data correctness? Data anonymity?

◦ Ongoing deployments?

I want to be able to debug everything
◦ My code, code of teammates, code of other teams in the company, external code, platform code

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 13

First aspect of DX
Be able to run locally and while offline
Use docker containers, nix, and virtual machines.

Configure your servers, so they can connect to your developer box. You can use reverse tunnels
or site-to-site VPN.

Use official emulators where possible.

Have a load-balanced team environment that gets deployed with all production changes.

Synchronize data artifacts (databases, logs, clickstreams, etc) from production to development
environment often. Make sure you don’t violate GDPR.

Deploy symbols for debugging. Configure remote debuggers.

Have a full IDE support.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 14

Second aspect of DX
Automated feature branch testing
I don’t want to block my team’s environments to run tests.

I want to push changes to the feature branch and have it
tested automatically.

I want to change in production-like environment. No mocks.

I want it to be fast.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 15

Second aspect of DX
Automated feature branch testing
Have a build system capable of testing feature branches.

Each feature branch should create a new environment with
Infrastructure as Code, Test Containers, docker-compose,
or something similar.

All configuration should be applied automatically. Never
hardcode things. Follow the Twelve-Factor Apps.

Feature branches should be tested independently.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 16

Third aspect of DX
Automated deployment
I want to click „merge”, and then everything should be deployed to production.

All tests should be executed.

No manual steps should be needed.

Rollback should happen automatically if needed.

Features may be deployed gradually and on a schedule.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 17

Third aspect of DX
Automated deployment
Get a proper CI/CD.

Have metrics in place. When metric spikes during the deployment, roll things back.

Use Infrastructure as Code.

Deploy features behind feature toggles.

All tests should be executed before and after the deployment.

Consider atomic updates, gradual deployments with load balancers, A/B tests.

Keep changes compatible. Don’t break your data. Be able to roll back database migrations.

Use canary deployments or blue-green deployments.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 18

What beside tests?
Compilers

◦ They can verify correctness of our code

◦ They can prove our code works

◦ They are fast and automated

◦ The cost of meeting their requirements may
be very high

Metrics
◦ They can quickly show all edge cases where

our software malfunctions

◦ But they require the software deployment
and the right traffic

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 19

Observability
◦ We need to integrate tools that can identify the

root cause of issues

◦ We can integrate heuristics and AI approach for
finding bugs

Customers
◦ They’ll quickly identify most important bugs

◦ They’ll indicate which parts of the software are
actually used

Keeping tests
maintainable

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 20

Why do we use mocks?
Imagine that it takes you one millisecond to run all tests with a new
database.

The database matches the production one exactly.

The database is completely independent from other databases.

All tests run in parallel.

Databases is created on the fly, and is terminated after all tests are done.

All of that in one millisecond.

Would you ever mock such a database?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 21

So why do we mock?
A production piece is slow.

We don’t have a license to run the
production piece locally.

The production piece is expensive.

Tests are slow.

It’s technically impossible to run the
production piece locally.

The production piece is a physical
hardware, and we don’t have it with
us.

Use Mockito-like mocks.

Implement your own mocks.

Use 3rd party mocks.

Use docker containers or virtual
machines.

If you don’t run the production code,
then you’re still runing a mock. No
matter how clever the mock is.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 22

How to write maintainable mocks
Don’t repeat a series of Mockito.when (or any Arrange) in an every single unit test.

◦ Start from a proper state, and replace just one part of it

◦ Builders are nice

Name test objects represeting proper business samples.

Don’t create invalid objects for tests.

Don’t generate data manually.
◦ Use things like AutoFixture instead

◦ Use property-based testing

Don’t repeat too much.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 23

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 24

Don’t repeat a series of Mockito.when (or any Arrange) in an every single unit test.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 25

Name test objects represeting proper business samples

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 26

Don’t generate data manually.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 27

Don’t repeat too much.

Testing different
domains

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 28

Mocks based on contracts
We need to mock production components
(for whatever reason).

Mocks do not represent the actual
components – whitebox and London
(Mockist) TDD.

Don’t use mocks if possible
◦ Follow Detroit TDD

◦ Run production code as much as possible

◦ Design by contract

Any non-production component, no matter
how smart, is a mock.

Solution – Liskov Substitution Principle.

It’s not (only) about the inheritance.

It’s about the contract
◦ Preconditions

◦ Invariants

◦ Postconditions

◦ History principle

Contracts cannot be verified by the callee!
Only the caller can verify them.

Contracts don’t need to be written down in
the code.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 29

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 30

It’s easy to break contract with mocks

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 31

It’s easy to break contract with mocks

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 32

It’s easy to break contract with mocks

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 33

It’s easy to break contract with mocks

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 34

It’s easy to break contract with mocks

Infrastructure as Code (IaC)
We can scale environments easily.

We decrease the recovery time in
case of a security breach.

We can test things independently.

We can test feature branches
without blocking others.

Permissions? Allowlisting?
◦ This may require manual actions

Dynamic IP addresses? Domain names?
◦ IP may not be available. Some discovery is needed for DNS

◦ All configuration should be delivered via environment variables

Self-signed certificates?
◦ They may not work with domain names

Cost? License?
◦ Creating additional resources is expensive

Time?
◦ Deployment is slow!

Missing hardware?
◦ Cloud provider may not be able to provide enough resources

Rollbacks?
◦ It may be impossible to roll back in case of a filure

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 35

Testing distributed Extract-Transform-
Load (ETL)
Unit tests work but they don’t find the actual
issues. They don’t test integration points.

Pay attention to things easy to miss:
◦ DD.MM.YYYY vs MM.DD.YYYY

◦ Decimal separator

◦ Character encoding

◦ Null vs empty string vs any other empty value,
including business markers like „N/A”

◦ Character escaping

◦ Differences in regular expressions

Test networking and marshalling in your
heterogenous cluster.

Unit tests:
◦ To verify „it kinda works”

◦ To cover all impedance mismatch errors

End-to-end tests on a minimal amount of
data:

◦ To verify caching and marshalling

◦ To see that it doesn’t hang

Understand if you can delay your processing. If
it breaks – can you catch up later on?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 36

Testing Machine Learning (ML)
Testing ML is expensive. Consider reserving the
hardware or going on-premise.

Unit testing is hard because it doesn’t test
anything.

Property-based testing is hard because of an
inherent randomness.

Training is very sensitive to the quality of the
input data.

You need to run the pipeline end-to-end,
including all ETL transformations on the input
data.

Use metrics to assess the quality of the trained
model.

Make sure it actually works – run your inference.

Test with golden set to verify it works without
segfaults:

◦ Have a well-prepared input data
◦ Train with a fixed seed
◦ Keep it short
◦ Maintaining the golden set is hard

Test with small production data to see that it
actually works:

◦ Run all ETL transformations as a part of the test
◦ Verify metrics like AUROC
◦ Include inference as well
◦ This is slow

Is it bad if it breaks? How often do you need to
retrain the model? Can you accept some outage?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 37

User Interface (UI) and Hardware tests
Retry tests!

Use emulators, but remember that they are
not perfect.

Record tests, so it’s easier to debug them.
However, keep in mind that the recording
slows things down, and may cause tests to fail.

Make them slow but stable – psychological
aspect.

Test all possible variations.

Overprovision for stability.

Focus on correctness tests:
◦ Make them slow, automatically retried, but

stable!

◦ They need to verify that the feature works

◦ Don’t ignore them if they fail

Have a seperation set of variation tests:
◦ For non-standard devices, resolutions, UI

settings

◦ They may fail much more often, and it may be
acceptable to ignore them

◦ Add an alarm when a test case fails for a
prolonged period of time

◦ Review test cases, and look for patterns

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 38

Code hygiene
We can never prove the code will work. But
we can be pretty sure.

Use compilers, linters, static analysis, type
systems.

Think in terms of property testing. Check
„features”, not „behawior”.

Verify concurrency and distributed features
with math models.

Check contracts.

Run mutation tests to figure out if you cover
crucial parts.

Use strongly typed languages!

Use ever stronger strongly typed languages
like Idris. Use Coq.

Use TLA+ for distributed and concurrent
solutions.

Use mutation tests.

Learn SAT, ILP, CSP, LogP.

Use high-level architectural patterns for
organizing your code

◦ Bulk Synchronous Parallel, Map-Reduce

◦ Actors, agents, structured concurrency

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 39

Load tests and Comparison tests
Take logs from production and replay them
against your test environment.

◦ Redact secrets
◦ Anonymize Personally Identifiable Information

Sample logs from a wide time range – you want
to get all your peak times.

Encode the state in your logs.

If you don’t have enough logs – just play them
over and over again.

Watch out for:
◦ Randomness
◦ Scheduled jobs changing state
◦ Non-significant differences (order of fields,

timestamps etc)

Make sure you can recognize test requests from
production ones.

Make sure you can recognize load test requests
from production ones.

Log source of requests – do you know who sends
them?

Think about caches – do you need to prefill them
before running a load test?

Be able to stop your load tests at any time.
Especially if you cause an actual issue in
production!

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 40

Push to the left
Load tests are slow and too late in the
pipeline.

We often don’t have enough data to run load
tests locally.

Humans are often too slow to find issues with
performance (like N+1 queries or table scans).

Developer databases are often different from
the production ones.

Keep schemas and configuration in sync
between developer environment and
production.

Extract database execution plans with
OpenTelemetry.

Verify if execution plans will scale well. Table
scans are too slow for production.

Check time complexity.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 41

Configuration
The concept of refactoring is very deceptive!

SQL queries will still work if we remove
indexes.

ORMs will still work if we change eager loading
to lazy loading.

Application will still work if we decrease
memory just a little.

Database will still work if we downscale it.

We need to be able to verify if things are
configured properly.

Test non-functional requirements.

Verify how the data was obtained.

Check if running configuration matches the
desired one.

Compare logs and traces. Look for differences.

Have anomaly detection in place.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 42

Documentation as Code
Keeping documentation and diagrams up to
date is hard.

There is no way to verify if our code works as
it’s explained in the docs.

We don’t need to know how it works. We
need to see when it changes the way it
works!

We can generate documentation automatically
from code.

Have automated markdown files regenerated
for each test when they run:

◦ Document inputs and outputs

◦ Put these files in your source control

◦ Commit them to the repository

Source control will indicate when there was a
change in the behavior.

Use PlantUML, structurizr, or other tools that
can visualize computer-generated
documentation easily.

Synchronize your repository with Confluence
and wikis.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 43

A/B tests and feature toggles
Gather all data:

◦ Clickstreams, views, identifiers, input
parameters, output parameters

Don’t drop raw data!

Keep your ETL pipeline smooth.

Ideally: use one source of truth and one tech
stack.

Remember that statistics is hard! You can’t just
look at numbers:

◦ p-value, z-score

◦ confidence interval

Do you need a testing environment at all?
◦ You need to keep everything backward

compatible – APIs, data formats, table schemas,
processing logic

◦ You need to keep everything forward compatible
– don’t drop unknown properties

◦ Rollback takes time and is not atomic

◦ Launching big features might be harder

◦ Consider using canary deployments and feature
toggles instead

Rerun your A/B analysis periodically. Is it
possible that the world has changed?

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 44

Metrics
Infrastructural:

◦ CPU, memory, GPU memory, number of threads,
processes, disk usage

Runtime dependent:
◦ Heap usage, statistics of well-known GCs,

number of promotions/demotions

Application dependent:
◦ Transactions, requests, business objects

◦ Use dimensions – country, day of week, type of
customer

Aggregation is hard! Understand your
percentiles and trimmed means.

Generate your dashboards automatically!

Configure alarms based on metrics. Emit 1 for
failure and 0 for success to see errors on
dashboards easily.

Have rollback in place when metrics change.

Run anomaly detection.

Review crucial business metrics manually
with stakeholders on a regular basis.

Always emit metrics! Do not have metrics
with missing datapoints.

Store metrics in logs in some way.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 45

Backup tests
How do you test your backup procedures?

Who maintains the backup? Is it your cloud
provider?

How fast can you restore the backup?

How fast can you recreate everything in case
of a security breach?

Can you migrate to a different provider at all?

Make sure you test the backup and restore
procedure.

Have some numbers showing how fast you can
recover.

Keep backups locally, and in external storage
provider.

Avoid vendor lock-in.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 46

Rollback tests
Can you roll things back?

What detects whether you need to roll back or
not?

What about API compatiblity?

What about data changes?

Do you have audits?

Can you roll back your IaC? Do you have
enough machines?

What about caches? How do you roll them
back?

Have metrics and alarms causing an
automated rollback.

Maintain API compatiblity.

Deliver software in a way that it supports both
old algorithm and a new one.

Use temporal tables or implement auditing
manually.

Perform atomic updates where possible.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 47

Summary
Code is a cost. So are tests. Don’t do them just for the sake of doing.

Don’t mock. No matter how clever the mock is, it’s still a mock!

Do not break contracts.

Maintain backward and forward compatibility.

Test your backups and rollback procedures.

Think about 3 aspects of DX.

Use IaC. Generate your documentation automatically.

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 48

Q&A

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 49

References
https://www.youtube.com/watch?v=f7i2wxQVffk – C4 models as Code

https://plantuml.com/ - PlantUML

https://www.idris-lang.org/ - Idris

https://semaphoreci.com/blog/what-is-canary-deployment - Deployments

https://www.dynatrace.com/news/blog/what-is-observability-2/ - Observability

http://blog.adamfurmanek.pl/2022/05/07/types-and-programming-languages-part-10/ - TDD

http://blog.adamfurmanek.pl/2022/02/12/types-and-programming-languages-part-8/ - Testing

http://blog.adamfurmanek.pl/2021/10/23/types-and-programming-languages-part-7/ - DX

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 50

https://www.youtube.com/watch?v=f7i2wxQVffk
https://plantuml.com/
https://www.idris-lang.org/
https://semaphoreci.com/blog/what-is-canary-deployment
https://www.dynatrace.com/news/blog/what-is-observability-2/
http://blog.adamfurmanek.pl/2022/05/07/types-and-programming-languages-part-10/
http://blog.adamfurmanek.pl/2022/02/12/types-and-programming-languages-part-8/
http://blog.adamfurmanek.pl/2021/10/23/types-and-programming-languages-part-7/

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

22.06.2024 TESTING ON A LARGE SCALE - ADAM FURMANEK 51

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

