
Seeing Behind The
Scenes
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

SEEING BEHIND THE SCENES - ADAM FURMANEK22.08.2024 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

After running mstsc.exe for
some time, the audio and
video are out of sync. Fix it
please.
HTTPS://LOOPTUBE.IO/?VIDEOID=U03LLVHBZOW
HTTPS://WWW.YOUTUBE.COM/WATCH?V=U03LLVHBZOW

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 2

https://looptube.io/?videoId=U03lLvhBzOw
https://www.youtube.com/watch?v=U03lLvhBzOw

Audio and Video
We don’t have access to the mstsc.exe source code.

We are on our own (nobody’s going to help us).

We can use only publicly available materials.

We know nothing about mstsc.exe:
◦ What programming language it’s written in

◦ How it downloads, stores, and plays audio and video

◦ Why it’s getting out of sync

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 3

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 4

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Everyone knows that debugging is twice as
hard as writing a program in the first place.

So if you're as clever as you can be when you
write it, how will you ever debug it?
BRIAN KERNIGHAN
THE ELEMENTS OF PROGRAMMING STYLE , 2ND EDITION, CHAPTER 2

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 5

Debugging is twice as hard as writing the
code in the first place.

Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart
enough to debug it.
BRIAN KERNIGHAN?

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 6

It’s wrong
We rarely debug just our code

◦ When writing the code, we made assumptions about everything around

◦ When debugging, we can verify these assumptions

Debugging is just a different skill
◦ I may not be the best cook in the world, but I can still recognize good and bad food

◦ Debugging happens after writing the code. During debugging, we often know what doesn’t work (which
side effect is incorrect)

Debugging requires different tools
◦ We code with IDEs (and all they bring like static code analysis, linters, etc.)

◦ We debug with debuggers, tracers, profilers, monitors, analyzers, etc.

Debugging is not harder than writing the code. Unfortunately, it’s not easier either. It’s just
different.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 7

How to Debug?
We need to see what’s going on

◦ Without seeing (and reproducing on demand) it’s much harder.

In order to see things, we need to have tools.

We can hypothesize how things work.

To come up with reliable hypotheses, we need to know how people do things (or how things
work).

Next, we can confirm and reject our hypotheses.

To do that, we need to practice our skills.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 8

Agenda
Patterns: MMCSS, threads, locks, memory, IPC, network, and others

Tools: Debugging, Profiling, Tracing, Memory, Network, Metrics

Debugging demos

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 9

Patterns

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 10

Patterns
During coding, we make tons of assumptions. We rely on our knowledge about computers,
networks, hardware, infrastructure...

The more patterns we know, the more efficient we are. However, we need to set our
expectations right.

We need to know how others do things to be good engineers.

The principle of least astonishment (POLA), also known as principle of least surprise, proposes
that a component of a system should behave in a way that most users will expect it to behave,
and therefore not astonish or surprise users

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 11

Your app is not alone

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 12

Multimedia Class Scheduler Service
(MMCSS)
Enables multimedia applications to ensure that their time-sensitive processing receives
prioritized access to CPU resources.

https://learn.microsoft.com/en-us/windows/win32/procthread/multimedia-class-scheduler-
service

When playing music:
◦ 80% of your CPU is dedicated to multimedia activities (SystemResponsiveness)

◦ At most 10 non-multimedia network packets are handled each millisecond (NetworkThrottlingIndex)

Do not listen to the music while playing online games.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 13

https://learn.microsoft.com/en-us/windows/win32/procthread/multimedia-class-scheduler-service

Foreground boost
Priority inversion – if a thread waits for a resource (like mutex), the OS will boost the priorities of
other threads holding the resource. Windows does that every 5 seconds.

If a thread has been runnable for 4 seconds and hasn’t been given a chance to run, the OS will
boost its priority to avoid starvation. Windows does that every 1 second.

Time quantum for Windows Server is set to 12 clock cycles (~180 milliseconds). For client
edition, it’s 2 clock cycles (~30 milliseconds).

Default quantum for Linux varies. It can be 100 milliseconds. However, threads there get time
slice based on their load and can be even hundreds of milliseconds.

Foreground thread get a priority boost. Windows assigns 4 clock cycles (~60 milliseconds).

Keep app faster by looking at it.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 14

Single instance only
Two common approaches:

◦ With a system-wide lock identified by name

◦ With a file

Do not copy blindly from Stack Overflow
◦ https://x.com/Foone/status/122964125837035

5200

◦ https://www.reddit.com/r/ProgrammerHumor/
comments/f6csjp/so_both_these_tools_copied
_from_the_same_wrong/

◦ https://stackoverflow.com/questions/502303/h
ow-do-i-programmatically-get-the-guid-of-an-
application-in-c-sharp-with-net/502323#502323

◦ https://www.pcreview.co.uk/threads/assembly-
guid.1394335/

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 15

https://x.com/Foone/status/1229641258370355200
https://www.reddit.com/r/ProgrammerHumor/comments/f6csjp/so_both_these_tools_copied_from_the_same_wrong/
https://stackoverflow.com/questions/502303/how-do-i-programmatically-get-the-guid-of-an-application-in-c-sharp-with-net/502323#502323
https://www.pcreview.co.uk/threads/assembly-guid.1394335/

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 16

Interactions can be
really surprising

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 17

Binding IP address and EDR
Many applications use DLL-injection.

Windows provides multiple techniques for that:
◦ Hooks

◦ Loading libraries based on registry

◦ Creating threads in remote processes

Examples:
◦ ForceBindIP

◦ ConEmu

◦ Anti-viruses

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 18

Keyboard shortcuts
React to keyboard handler

◦ Works inside our process only

Poll the keys every millisecond
◦ Works across RDP sessions

◦ Uses more CPU

Register for a hotkey with RegisterHotKey
◦ Sends WM_HOTKEY

◦ No polling required

◦ Some keys are reserved

Register a global handler for all processes with SetWindowsHookEx
◦ Requires DLL that will get injected

◦ Runs in the target process

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 19

Synchronization objects
Many obvious solutions:

◦ Mutexes

◦ Semaphores

◦ Spin locks

Not-so-obvious solutions:
◦ Existence of a file

◦ Open socket

◦ Shared memory with integer variable and Compare-and-Swap

◦ Byte-range in a file https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63

These solutions can work between languages, machines, or even systems not connected directly
but sharing some resource (like SMB)

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 20

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63

Communication
Applications can communicate with

◦ Object Linking and Embedding (OLE) and Component
Object Model (COM)

◦ Network sockets, Unix sockets, Windows sockets
◦ Data Copy (WM_COPYDATA)
◦ Dynamic Data Exchange (DDE)
◦ Files and memory-mapped files
◦ Pipes, mailslots
◦ Signals
◦ Serial ports and other devices
◦ Clipboard
◦ RPC with Microsoft Interface Definition Language (MIDL)

Others can run code in our programs
◦ Asynchronous Procedure Call (APC)
◦ CreateRemoteThread
◦ Hooks, DLL-injection

Each thread may have a message loop
◦ Each message may contain additional data
◦ We pump messages with GetMessage, DispatchMessage,

TranslateMessage, PeekMessage

Anyone can send us a message
◦ PostMessage, PostThreadMessage, SendMessage

async/await may use the message loop (depending on
the synchronization context).

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 21

Networking
Sockets after closing are in TIME_WAIT state for 2 minutes (can be changed).

Internet Protocol (IP) packages have TTL
◦ Changing TTL to higher value may enable tethering in some mobile scarriers

Routing table is used for full-tunnel VPN-s
◦ Can be monitored automatically to prevent tunnel escapes

TCP connections can be routed over various channels
◦ DNS, ICMP, file systems, serial ports, sound, S3

TCP have many heuristics that may break performance
◦ TCP_NODELAY (Nagle’s algorithm) that reduces number of packets is one of them

◦ https://brooker.co.za/blog/2024/05/09/nagle.html

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 22

https://brooker.co.za/blog/2024/05/09/nagle.html

Our code may be
changed dynamically

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 23

Config files
Many ways of storing configuration

◦ INI files, registry, dotfiles, group policy,
environment variables, databases, app configs

They can be redirected
◦ Windows can run 32-bit applications on 64-bit

system with WoW64

◦ Files get redirected (C:\Windows\system32 to
C:\Windows\SysWoW64)

◦ Registry gets redirected (HKLM\Software to
HKLM\Software\Wow6432Node)

Windows supports many more techniques:
◦ WoW (to run 16-bit apps on 32-bit systems)

◦ ARM64EC

◦ ARM64X

This gets really dirty
◦ C:\Windows\System

◦ 16-bit x86 binaries on 16-bit and 32-bit x86
system

◦ C:\Windows\System32

◦ 32-bit x86 binaries on 32-bit x86 system

◦ 64-bit x86 binaries on 64-bit x86 system

◦ 64-bit ARM binaries on 64-bit ARM system

◦ C:\Windows\SysWoW64

◦ 32-bit x86 binaries on 64-bit x86 system

◦ 32-bit x86 binaries on 64-bit ARM system

◦ C:\Windows\SysArm32

◦ 32-bit ARM binaries on 64-bit ARM system

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 24

Implicit checks to improve performance
C# null-check is not explicit (same in other languages).

Syscall parameters are verified implicitly by failing and
handling page fault.

JVM can remove the explicit null-check and add it back if
there was a NullPointerException.

Many things are just executed inside a try-catch block.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 25

Compiler optimizations
Frame pointer omission

◦ We don’t save esp in ebp

◦ We save one general register but we decrease eperformance, break
the stack traces, and break the exception handling

Devirtualization
◦ Instead of calling functions with callvirt, we call them directly since

we know if there is exactly one implementation

Volatile and double-checked-lock
◦ Compilers can cache values and break our code

Undefined behavior in C++
◦ Whole code blocks can be removed

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 26

Compiler and CPU optimizations
Memory model

◦ Reads and writes can be reordered. Barriers must be used to stop that from happening (which
decreases performance)

Speculative execution
◦ CPUs may execute both code branches to improve performance

Branch prediction
◦ Processing an ordered array is faster than unordered one

◦ https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-
processing-an-unsorted-array

◦ This can be exploited (Spectre, Meltdown)

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 27

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

Security
Kernel mode + user mode = RING0 + RING3

◦ This is how we typically think about security

RING0 + RING3 + RING1 + RING3
◦ This is how we used to run virtual machines with

trap-and-emulate

Root Mode RING0 + RING3 + Non-Root Mode
RING0 + RING3

◦ This is how we run VMs with VT-x. Can be nested
with enlightened VMCS

VTL0 + VTL1
◦ Virtual Secure Mode (VSM) with Virtual Trust Levels

(VTLs)

RING -1 + RING -2 + RING -3
◦ Hypervisor + System Management Mode + Intel

Management Engine

Mandatory Integrity Control
◦ Low – Metro apps

◦ Medium – regular code

◦ High – after we elevate with UAC or (g)sudo

◦ System – system services

◦ TrustedInstaller – trusted installer service

User „levels”
◦ Regular user

◦ Administrator

◦ SYSTEM

◦ TrustedInstaller

JobObjects, Silos, Server Silos
◦ Solutions for Windows Containers

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 28

Clean code
When we don’t see the code, we can’t be sure how things are done.

Typically, there are many „good” ways to do every little thing in
software engineering.

However, we don’t reinvent the wheel every single time. We just
learn the „best practices” and „software patterns”.

Great minds think alike.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 29

Tools

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 30

Seeing the Code
Visual Studio

◦ Visual Studio can decompile the code automatically starting with VS 2022 17.7 (since August 2023)
◦ https://learn.microsoft.com/en-us/visualstudio/debugger/decompilation?view=vs-2022#autodecompile-code

◦ Works for code exploration and debugging

◦ You need to disable „Just My Code”

dnSPY
◦ https://dnspy.co/

◦ ~200MB binaries

◦ You can copy it on your production server

◦ Works for code exploration and debugging

◦ Uses ILSpy behind the scenes

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 31

https://learn.microsoft.com/en-us/visualstudio/debugger/decompilation?view=vs-2022#autodecompile-code
https://dnspy.co/

Low Level Debugging
WinDBG, CDB, NTSD

◦ Generic debuggers with many extensions

◦ https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

KD, NTKD
◦ Kernel debuggers

dbgx64
◦ More UI-friendly than WinDBG

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 32

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 33

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 34

Decompilers
ILSpy

DotPeek

IDA

Ghidra

We can always use debuggers as decompilers

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 35

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 36

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 37

Profilers
Visual Studio Diagnostic Tools

◦ CPU Profile
◦ You need to disable „Show Just My Code” in the CPU Usage

pane

◦ Shows flamegraphs

◦ Memory snapshots

◦ File reads and writes

◦ Database queries

◦ Async activities

◦ Events

◦ Counters

◦ https://learn.microsoft.com/en-
us/visualstudio/profiling/profiling-feature-
tour?view=vs-2022

Visual Studio Instrumentation

dotnet-trace

DotTrace

Windows Performance Toolkit

ETW

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 38

https://learn.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour?view=vs-2022

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 39

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 40

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 41

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 42

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 43

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 44

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 45

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 46

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 47

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 48

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 49

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 50

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 51

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 52

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 53

Strace
Process Monitor API Monitor

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 54

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 55

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 56

Memory
WinObj

VMMap

Visual Studio

WinDBG

TaskManager, ProcessExplorer

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 57

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 58

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 59

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 60

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 61

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 62

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 63

Communication
Fiddler

◦ Fiddler Classic is still free to download and use

Wireshark

Network Monitor (NetMon, deprecated)

Message Analyzer (deprecated)

Winpcap

TCPView

Spy++

Pipe Monitor

Mailslot Monitor

RPCMon

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 64

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 65

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 66

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 67

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 68

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 69

Debugging

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 70

CTRL+ALT+HOME activates
the connection bar.
Please change that to a
different combination.
HTTPS://LEARN.MICROSOFT.COM/EN-
US/WINDOWS/WIN32/TERMSERV/TERMINAL -SERVICES-SHORTCUT-
KEYS

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 71

https://learn.microsoft.com/en-us/windows/win32/termserv/terminal-services-shortcut-keys

Tutaj screenshot, że RDP wysyła wiadomość WM_USER1

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 72

Tutaj screenshot z kodu z cmp

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 73

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 74

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 75

After running mstsc.exe for
some time, the audio and
video are out of sync. Fix it
please.
HTTPS://LOOPTUBE.IO/?VIDEOID=U03LLVHBZOW
HTTPS://WWW.YOUTUBE.COM/WATCH?V=U03LLVHBZOW

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 76

https://looptube.io/?videoId=U03lLvhBzOw
https://www.youtube.com/watch?v=U03lLvhBzOw

Audio and Video
We don’t have access to the mstsc.exe source code.

We are on our own (nobody’s going to help us).

We can use only publicly available materials.

We know nothing about mstsc.exe:
◦ What programming language it’s written in

◦ How it downloads, stores, and plays audio and video

◦ Why it’s getting out of sync

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 77

Audio and Video
We can reproduce the problem.

We notice that the sound gets delayed after our computer is overloaded.

We know RDP defines virtual data channels.
◦ https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-

protocol-rdp

◦ https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-rdsod/072543f9-4bd4-4dc6-
ab97-9a04bf9d2c6a

◦ https://github.com/MicrosoftDocs/SupportArticles-docs/blob/main/support/windows-
server/remote/understanding-remote-desktop-protocol.md

We may suspect that audio and video are sent via different channels with no timestamps or time
markers.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 78

https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-rdsod/072543f9-4bd4-4dc6-ab97-9a04bf9d2c6a
https://github.com/MicrosoftDocs/SupportArticles-docs/blob/main/support/windows-server/remote/understanding-remote-desktop-protocol.md

Approach 1: Implement timestamping
Difficult, as we have no access to source code.

However, RDP implements virtual data channels, so we can implement plugins.

There are applications doing that, for instance Sound For Remote Desktop: https://www.sound-
over-rdp.com/

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 79

https://www.sound-over-rdp.com/

Approach 2: Decrease the buffer length
The incoming audio must be buffered somewhere.

If we find the buffer, we can shorten it.

Hard to do because:
◦ The buffer is probably initialized at the application startup

◦ We don’t know how the buffer length is determined – it could be a constant integer, determined based
on allocation metadata, or determined automatically

◦ We don’t know if there is one buffer or many

◦ It’s hard to find the buffer without knowing its content

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 80

Approach 3: Empty the buffer
periodically
Hard to do because:

◦ We don’t know where the pointer to the current position in the buffer is

◦ We need to avoid race conditions

◦ And we still can’t find the buffer easily

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 81

Approach 4: Find the call site and cut the
buffer in half
Let’s find where the audio is played.

Let’s patch the call site.

Let’s shorten the buffer by half based on some random sampling.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 82

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 83

https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/nf-mmeapi-waveoutprepareheader

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 84

https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/nf-mmeapi-waveoutprepareheader

Tutaj screenshot z kodem wywołującym metodę WinAPI

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 85

Tutaj screenshot z własnym patchem (i sesją z
WinDBG)

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 86

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 87

Summary
Debugging is neither harder nor easier than coding. It’s different.

It’s a completely different skill for which we need new tools.

Great minds think alike. We need to know how others do things.

Ultimately, it’s just a bunch of bytes.

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 88

Q&A

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 89

References
https://learn.microsoft.com/en-us/windows/win32/procthread/multimedia-class-scheduler-service - MMCSS

https://www.reddit.com/r/ProgrammerHumor/comments/f6csjp/so_both_these_tools_copied_from_the_same_wrong/
- single instance bug

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63 – lock based on byte-ranges

https://blog.adamfurmanek.pl/2018/05/05/concurrency-part-2/ - file lock

https://blog.adamfurmanek.pl/2019/10/19/concurrency-part-8/ - memory mapped file lock

http://emulators.com/docs/abc_arm64ec_explained.htm - WoW64 and AMR64EC

https://brooker.co.za/blog/2024/05/09/nagle.html - TCP_NODELAY

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-
array - sorted array is faster

https://learn.microsoft.com/en-us/windows/win32/ipc/interprocess-communications - IPC

https://stackoverflow.com/questions/78028901/does-async-await-use-windows-messages-to-return-control-to-the-ui-
thread - async and message loop

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 90

https://learn.microsoft.com/en-us/windows/win32/procthread/multimedia-class-scheduler-service
https://www.reddit.com/r/ProgrammerHumor/comments/f6csjp/so_both_these_tools_copied_from_the_same_wrong/
https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63
https://blog.adamfurmanek.pl/2018/05/05/concurrency-part-2/
https://blog.adamfurmanek.pl/2019/10/19/concurrency-part-8/
http://emulators.com/docs/abc_arm64ec_explained.htm
https://brooker.co.za/blog/2024/05/09/nagle.html
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array
https://learn.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://stackoverflow.com/questions/78028901/does-async-await-use-windows-messages-to-return-control-to-the-ui-thread

References
Jeffrey Richter - „CLR via C#”

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md — „Book of the Runtime”

Adam Furmanek – „.NET Internals Cookbook”

Jeffrey Richter, Christophe Nasarre - „Windows via C/C++”

W. Richard Stevens, Stephen A. Rago – „Advanced Programming in the UNIX Environment”

Mark Russinovich, David A. Solomon, Alex Ionescu - „Windows Internals”

Daniel P Bovet, Marco Cesati Ph.D. – „Understanding the Linux Kernel: From I/O Ports to Process”

Richard Mcdougall, Jim Mauro – „Solaris Internals: Solaris 10 and Opensolaris Kernel Architecture”

Joe Duffy - „Concurrent Programming on Windows”

Brendan Gregg – „Systems Performance: Enterprise and the Cloud”

Mario Hewardt, Daniel Pravat - „Advanced Windows Debugging”

Mario Hewardt - „Advanced .NET Debugging”

https://blogs.msdn.microsoft.com/oldnewthing/ — Raymond Chen „The Old New Thing”

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 91

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://blogs.msdn.microsoft.com/oldnewthing/

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

22.08.2024 SEEING BEHIND THE SCENES - ADAM FURMANEK 92

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

