
Ordering the Chaos
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

ORDERING THE CHAOS - ADAM FURMANEK17.12.2023 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam


About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 2

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam


Agenda
What is time?

Using clock in computer science.

Avoiding clock in computer science.

Real implementation.

Going beyond time.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 3



What is time?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 4



What is time
There is no one global time. Each machine has its own clock.

There is a delay between reading the clock value and processing it.

Clocks can differ between readers (Special Theory of Relativity by Einstein).

Clocks break over time (clock drift). Best of them have drift rate around 10−13 second.

Standard second is defined as 9,192,631,770 periods of transition between the two hyperfine 
levels of the ground state of Caesium-133.

Coordinated Universal Time (UTC) is based on atomic time. It is synchronized and broadcasted 
regularly. Signal can be received with accuracy to about 1 microsecond.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 5



What is timezone
Not (only) a UTC offset!

Region of the globe observing a uniform standard time.

Most of the times it is a whole number of hours offset but can be 30 or 45 minutes.

Specifies offset and Daylight Saving Time (DST) shifts rules.

DST can start at various times of day (2:00 AM, midnight, 0:05 AM) and times of year (as early as 
March and as late as June).

Storing a time with UTC offset is not enough because the offset may change.

How to show it to user for events half a year from now?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 6



Timezones change

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 7

Timezones for Europe/Warsaw:
• UTC+1h / UTC+2h — since 1977
• UTC+1h — 1965-1976
• UTC+1h / UTC+2h — 1957-1964
• UTC+1:24h — 1800-1914



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 8



Daylight Saving Time

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 9



It goes on and on
Amsterdam was once at the UTC+00:19:32.13 (19 minutes). It was generally simplified to UTC+0:20.

Offsets go from -12 to +14. Kiribati is on the very west of the world but is the first to observe the new
year.

There are cities with multiple time zones like Michigan City, IN.

Gold Coast (city in Australia) spans across two states which have different time zones in summer.

Gold Coast Airport’s runway crosses the state line. Its one end is in different timezone than the other. 
Airport observes one time, though.

Russian Railways (except Sakhalin railways) followed Moscow Time. Starting in 2018 they follow local
time.

Genrally, Arizona doesn’t observe DST. Navajo Reservation in Arizona does, while Hopi Reservation
does not. Jeddito, AZ is a town in Navajo Reservation, surrounded by the Hopi Reservation, which is in 
turn surrounded by the rest of the Navajo Reservation.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 10



UTC vs GMT
UTC

Based on atomic clock.

Is an approximation of GMT.

Uses leap seconds to stay close to GMT.

Is a time.

GMT

Based on rotation of the Earth.

Can differ from UTC by up to 0.9 second.

Now replaced by UT1.

Is a timezone.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 11



Leap second
Second added to UTC time to maintain distance to solar time. It can be deleted but this hasn’t 
happened.

It can break your system! It happened on 2012-06-30.

The Altea reservation and departure system run by Amadeus, one of the largest computer travel 
reservation systems on the planet, couldn’t cope and crashed. For 48 minutes, passengers and 
staff at Qantas and Virgin Australia were thrown back into the 1990s world of manual check-in 
and delayed flights.

The problem was (...) Linux, and back then the addition or removal of a leap second sent the 
system into meltdown – the system would deadlock.

The bug was found to affect kernels version numbers 2.2.26 to 3.3, inclusive.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 12

https://www.theregister.co.uk/2015/01/09/leap_second_bug_linux_hysteria/



How is time distributed
Internet Assigned Numbers Authority (IANA) distributes a 
database called Time Zone Database (tz or zoneinfo).

It is updated multiple times a year.

For example 2019b released on 2019-07-01.

RFC 6557 Procedures for Maintaining the Time Zone 
Database describes how to update the time.

Most Linux distributions use tzdata package which gets 
regular updates.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 13



How is time distributed
Unicode Common Locale Data Repository (CLDR) provides mappings for languages, timezones, 
locales, parsing formats, country codes and much more.

Used by Microsoft (Windows), Apple (iOS), IBM, Google and many more.

Distributed as XML files.

For example version 35.1 released on 2019-04-17.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 14



Local time or UTC?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 15



UTC is not a silver bullet

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

16

https://www.euronews.com/my-europe/2022/10/28/when-will-the-eu-end-seasonal-clock-changes-only-time-will-tell



UTC is not a silver bullet
European Union considered dropping DST changes.

We want to organize an event at 9AM on May 18th 2025.

Currently, expected timezone is UTC+2.

Imagine that the country decides to go with UTC+1. This change will 
be published sometime next year.

How do we store the start time now?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 17



UTC is not a silver bullet
Let’s store as UTC and never update
We can store the value in UTC timezone. We subtract 2 hours from 
9AM and get the value:

2025-05-18T07:00:00Z

Country changes timezone. User comes to the system, we get UTC 
time, add 1 hour and get 8AM. We are one hour ahead of the event!

Pros:
◦ Easy to implement

Cons:
◦ Doesn’t work – we have off by one error

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 18



UTC is not a silver bullet
Let’s store as UTC and update
We can store the value in UTC timezone. We subtract 2 hours from 9AM and get 
the value:

2025-05-18T07:00:00Z

When we get an update of tz database, we recalculate the time. This time we 
get:

2025-05-18T08:00:00Z

Pros:
◦ It gives correct result

Cons:
◦ We need to store the original tz database version along with the data

◦ We need to access historical data for recalculations
17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 19



UTC is not a silver bullet
Let’s store as local time
Store date provided by an organizer – event is at 9AM.

Whenever we get a request we recalculate the time on the fly.

Pros:
◦ It works

Cons:
◦ We need to recalculate every time

◦ If we cache results then we need to update them when tz database changes

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 20



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 21

https://data.iana.org/time-zones/tzdb-2022b/NEWS

https://data.iana.org/time-zones/tzdb-2022b/NEWS


Problems with time
Minute has 60 seconds.

Month starts and ends on the same year.

Year has 365 days.

February has 28 days.

Week begins and ends in the same month.

Leap second is always inserted (never deleted).

Timezone is a whole number of hours offset.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 22

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time



A month begins and ends in the same 
year

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 23

Country Start numbered year on 1 
January

Adoption of Gregorian Calendar

France 1564 1582

Poland 1556 1582

Russia 1700 1918

Scotland 1600 1752

Spain 1556 1582

Sweden 1559 1753

Venice 1797 1582

https://en.wikipedia.org/wiki/Gregorian_calendar#Beginning_of_the_year



February has 28 days
Every 4 years (more or less) it has 29 days.

It can have 30 days. It happened for real in Sweden in 1712.

In 1753 February 17 was followed by March 1.

Not to mention Symmetry454 calendar containing a 35-days February.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 24



A minute lasts 60 seconds or something 
like that. Definitely not an hour!
Due to a bug in KVM on CentOS a virtual machine didn’t update its time when the system was 
put to sleep.

Whenever you suspended your machine its clock was drifting away. This could last minutes, 
hours or days.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 25

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time



Using clock in computer 
science

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 26



Cristian’s algorithm for clock 
synchronization

We send request to server at time 𝑇0 and get 
answer at time 𝑇1.

We set the time to 𝑇𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑇𝑠𝑒𝑟𝑣𝑒𝑟 +
𝑇1−𝑇0

2

This bounds the error.

We repeat the process multiple times and 
choose response with lowest round trip time.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 27

https://www.geeksforgeeks.org/cristians-algorithm/



Network Time Protocol (NTP)
We group machines in so called STRATUM 
layers.

STRATUM 0 is based on atomic clocks.

STRATUM 1 is synchronized within few 
microseconds.

There are multiple versions of standard. NTPv4 
passes 128-bit timestamps.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 28



Network Time Protocol (NTP)
Client polls multiple servers and performs 
statistical analysis.

It calculates:

◦ time offset 𝜃 =
𝑡1−𝑡0 + 𝑡2−𝑡3

2

◦ round-trip delay 𝛿 = 𝑡3 − 𝑡0 − 𝑡2 − 𝑡1

Outliers are discarded and time is estimated.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 29



Other approaches
Marzullo’s algorithm

◦ Estimates accurate time based on noisy sources

Intersection algorithm
◦ Used by NPT

◦ Similar to Marzullo’s algorithm, calculates center of interval differently

TrueTime
◦ Used by Google to synchronize time

◦ Each timestamp has a confidence interval no longer than 7ms

◦ Spanner utilizes timestamps to order transactions

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 30



Avoiding clock in 
computer science

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 31



Clock we want
We want to be able to answer if event 𝑎 happened before 
event 𝑏.

We want to do it on multiple machines over the internet.

We want it to be fast, we can’t wait for miliseconds.

We are interested only in events of some flow — HTTP 
request, offline job execution etc.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 32



Lamport timestamp
Tells whether event 𝑎 influenced 𝑏 which we denote as 𝑎 → 𝑏.

Provides partial ordering of events across distributed system.

Logical clock counter maintained in each process separately.

Clock increases with every action within single process.

Across processes clock is synchronized when comunication is 
performed. Maximum of two values is chosen.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 33



Lamport timestamp
1. A process increments its counter before each event in 
that process.

2. When a process sends a message, it includes its counter 
value with the message.

3. On receiving a message, the counter of the recipient is 
updated, if necessary, to the greater of its current counter 
and the timestamp in the received message. The counter is 
then incremented by 1 before the message is considered 
received.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 34



Lamport timestamp

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 35

https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-own-clock-The-clocks-run-at_fig7_246857366



Lamport timestamp
If event 𝑎 happened before 𝑏 and 𝑎 influenced 𝑏 (𝑎 → 𝑏) then 
𝐶 𝑎 < 𝐶(𝑏).

It works only when we can guarantee that one event influenced 
another. It holds within the same machine or across communicating 
machines.

Knowing that 𝑎 → 𝑐 and 𝑏 → 𝑐 we know that 𝑐 didn’t cause 𝑎 or 𝑏
but we don’t know which initiated 𝑐.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 36



Real implementation

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 37



Implementation
CORRELATION ID

Unique for given logical flow (i.e. User request)

Maintained across all involved parties.

Generated when message comes into the 
system.

Never modified.

LOGICAL TIME

Local to machine (thread, core, fiber…).

Updated in communication points.

Ideally, passed automatically throughout the 
system.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 38

Let’s start with manual implementation 
first and then examine standards.



Correlator

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 39



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 40



Correlator

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 41



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 42



Logger

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 43



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 44



Logger

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 45



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 46



Step 1
User comes to our 
system.

We need to generate 
correlation ID and logical 
time.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 47



Memory based Correlator

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 48



Memory based Correlator

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 49



Step 2

We call some node in 
the system.

We need to pass 
correlation ID and 
logical time in the 
headers.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 50



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 51



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 52



Step 3

We get HTTP 
request.

We need to parse 
headers.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 53



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 54



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 55



Step 4

We send 
response.

We need to return 
updated logical 
time in headers.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 56



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 57



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 58



Step 5

We need to 
update headers 
from the 
response.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 59



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 60



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 61



Important remarks
We want to wire this up using dependency injection or other middleware.

It is crucial to pass Lamport timestamp in each communication method
◦ Queues

◦ Database

◦ Any proprietary RPC framework

Finally, we need to deliver logs to centralized place (Logstash, OMS, Cloud 
Watch).

Finally, we can just filter logs using correlation ID and sort them using Lamport 
timestamp.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 62



17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 63



W3C Trace Context

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 64

https://www.w3.org/TR/trace-context/#trace-id
https://jimmybogard.com/building-end-to-end-diagnostics-and-tracing-a-primer-trace-context/

https://www.w3.org/TR/trace-context/#trace-id
https://jimmybogard.com/building-end-to-end-diagnostics-and-tracing-a-primer-trace-context/


OpenTelemetry and Jaeger

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 65

https://www.opensourcerers.org/2022/04/18/using-opentelemetry-and-jaeger/

Out-of-process 
autoinstrumentation.
No easy way to update 
the clock on operation 
return.
Correlation context could 
be used but is optional.

What’s wrong with the 
image?



Going beyond time

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 66



Vector clock
Generalization of Lamport timestamps.

We have N processes. Each process has its own logical clock.

Each process holds a copy of all clocks and chooses „smallest possible values”.

Initially all clocks are zero.

Each time a process experiences an internal event, it increments its own logical clock in the 
vector by one.

Each time a process sends a message, it increments its own logical clock in the vector by one and 
then sends a copy of its own vector.

Each time a process receives a message, it increments its own logical clock in the vector by one 
and updates each element in its vector by taking the maximum of the value in its own vector 
clock and the value in the vector in the received message (for every element).

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 67



Vector clock

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 68

https://en.wikipedia.org/wiki/Vector_clock



Vector clock
Provides partial ordering property.

Let’s say that 𝑉𝐶 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑛] is a vector clock of 𝑎.

We say that 𝑉𝐶 𝑎 < 𝑉𝐶(𝑏) if for each component 𝑉𝐶 𝑎𝑖 ≤
𝑉𝐶(𝑏𝑖) and for at least one component 𝑉𝐶 𝑎𝑖 < 𝑉𝐶(𝑏𝑖).

If 𝑎 → 𝑏 then 𝑉𝐶 𝑎 < 𝑉𝐶(𝑏). Similar to Lamport timestamp.

However, if 𝑉𝐶 𝑎 < 𝑉𝐶(𝑏) then we know 𝒂 happened before 𝒃.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 69



Other clocks
Tree Clocks

◦ Generalization of vector clocks
◦ Works when number of processes is dynamic

Plausible Clocks
◦ Take less space than vector clocks
◦ Can order events totally

Bloom Clocks
◦ Probabilistic data structure
◦ Space complexity independent of the number of nodes in the system
◦ No false negatives (= if two clocks are not comparable then Bloom Clocks can deduce that)

Matrix clock
◦ Vector of vector clocks
◦ Provides lower bounds on what other hosts know

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 70



Byzantine generals

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 71



Byzantine failure
In distributed systems, component will fail.

It may stop responding.

It may violate protocol.

It may repeat messages.

It may send out broken messages.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 72



𝑘-fault tolerance
System is 𝑘-fault tolerant if it survives faults in 𝑘 components 
and still meets specification.

Without Byzantine failures we need 𝑘 + 1 components to be 
𝑘-fault tolerant
◦ We just need to get answer from one component

With Byzantine failures we need 2𝑘 + 1 components to be 𝑘-
fault tolerant
◦ We need to do voting with regular majority

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 73



Consensus problem
Agreeing on a decision in a distributed system where each 
node can fail.

We want the following property:
◦ Termination

◦ Every correct process decides some value after a finite steps

◦ Integrity
◦ If all the correct processes proposed the same value then this value must be decided

◦ Agreement
◦ Every correct process must decide on the same value

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 74



Consensus problem

With 𝑘 faulty components we need 3𝑘 + 1
components in total to reach agreement.

But! If we cannot guarantee bounded message 
delivery, we cannot reach agreement if one 
component dies.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 75



Consensus problem
Unordered Ordered

Synchronous
Yes Bounded Delay

Yes Unbounded Delay

Asynchronous
Yes Yes Yes Yes Bounded Delay

Yes Yes Unbounded Delay

Unicast Multicast Unicast Multicast

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 76



Raft

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 77



Moving forward
If we have consensus, we can easily implement:
◦Total ordered broadcast

◦Compare-And-Set (CAS)

◦ Increment-And-Get (IAG)

Finally, we can easily order logs so we know exactly what 
was happening.

But this introduces very long delays.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 78



This his hard!
https://github.com/jepsen-io/jepsen

A framework for distributed systems verification, with fault 
injection

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 79

https://github.com/jepsen-io/jepsen


Summary
Wall clock is not useful in distributed systems.

Synchronizing clocks is hard. We can do that but we want to avoid doing that.

Logical clocks can be veary simple or very sophisticated. It depends on our 
needs.

Things will not become easier. Timezones change constantly, we cannot 
overcome physics limitations, some things are proven to be unsolvable.

Anything in your system can go wrong but if your logging mechanism fails then 
things are very bad.

Use Jepsen.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 80



Q&A

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 81



References
Andres S. Tanenbaum — „Distributed Systems: Principles and Paradigms”

George Coulouris, Jean Dollimore. Tim Kindberg, Gordon Bliar — „Distributed Systems Concepts 
and Design”

Benjamin Erb — „ Concurrent Programming for scalable web architecture”

Martin Kleppmann — „ Designing Data Intensive Applications”

Brendan Burns — „ Designing Distributed Systems”

Adam Furmanek – „.NET Internals Cookbook”

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 82



References
https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time —
falsehoods programmers believe about time

https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-
own-clock-The-clocks-run-at_fig7_246857366 — Lamport timestamps

https://medium.com/@balrajasubbiah/lamport-clocks-and-vector-clocks-b713db1890d7 —
Lamport clocks and vector clocks

http://blog.adamfurmanek.pl/2017/12/16/logging-in-distributed-system-part-1/ — logging in 
distributed system implementation

17.12.2023 83ORDERING THE CHAOS - ADAM FURMANEK

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-own-clock-The-clocks-run-at_fig7_246857366
https://medium.com/@balrajasubbiah/lamport-clocks-and-vector-clocks-b713db1890d7
http://blog.adamfurmanek.pl/2017/12/16/logging-in-distributed-system-part-1/


Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 84

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

