
MOV, Lambda, DSL
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

MOV, LAMBDA, DSL - ADAM FURMANEK23.05.2022 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 2

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda
What is abstraction.

From async down to MOV.

Turing Machine.

From function up to Typed Lambda Calculus.

Declarative forms and DSL

Summary.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 3

What is abstraction

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 4

Abstraction according to Wikipedia
The process of removing physical, spatial, or temporal details or
attributes in the study of objects or systems to focus attention on
details of greater importance; it is similar in nature to the process of
generalization.

The creation of abstract concept-objects by mirroring common
features or attributes of various non-abstract objects or systems of
study – the result of the process of abstraction.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 5

Abstraction = View

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 6

Abstraction examples according to
Wikipedia
The usage of data types to perform data abstraction to separate
usage from working representations of data structures within
programs.

The concept of procedures, functions, or subroutines which
represent a specific of implementing control flow in programs.

The process of reorganizing common behavior from non-abstract
classes into "abstract classes" using inheritance to abstract over
sub-classes as seen in the object-oriented C++ and Java
programming languages.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 7

What is our core entity?
Computation
We want to be able to compute anything.

And we want our Computers to do that.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 8

From async down to
MOV
LET'S SOLVE IT ALL!

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 9

async programming
The goal is to unblock the thread.

Typically implemented as a coroutine transformation.

Implemented entirely in the compiler. Doesn’t require any support from the runtime.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 10

async to state machine

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 11

Enumeration to state machine

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 12

Enumeration to state machine

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 13

Enumeration to loop

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 14

Loop to if + jump

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 15

Story continues
This code is compiled to Intermediate
Language (some .NET assembly-like language).

It is later JIT-compiled to a machine code.

Machine code has no idea about functions,
variables, parameters.

All it knows is:
◦ Memory

◦ CPU registers

◦ Instruction Pointer (which instruction to
execute)

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 16

Instructions:
◦ CMP – compare

◦ JMP – jump

◦ ADD, SUB, MUL, … - maths

◦ MOV – assign (move) data from one place to
another

MOV is powerful
MOV to, from

One mnemonic in an assembly language but 35 instructions on x86_64 architecture.

Can be used to modify CPU flags and registers.

Can be used to implement any other x86 instruction.

You need ONE assembly instruction to implement ANY application.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 17

M/o/Vfuscator2
https://github.com/xoreaxeaxeax/movfuscator

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 18

https://github.com/xoreaxeaxeax/movfuscator

OISC - One-Instruction Set Computer
MOV mnemonic on x86 represents multiple machine code instructions.

However, there are CPUs with literally one instruction which are still Turing Complete.

Typically:
◦ Subtract and branch if less than or equal to zero

◦ Subtract and branch if negative

◦ Subtract if positive else branch

◦ Reverse subtract and skip if borrow

◦ Subtract and branch if non zero (SBNZ a, b, c, destination)

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 19

Sidenote
ZISC – Zero-Instruction Set Computer
No instructions at all.

A very complex pattern matching.

Typically compared to neural networks.

Used for image recognition.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 20

Turing Machine

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 21

Turing Machine
Mathematical model of computation.

It defines an abstract machine which manipulates symbols on an infinite tape according to a
finite set of rules.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 22

https://iq.opengenus.org/general-introduction-to-turing-machine/

Turing Machine built with LEGO

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 23

https://upload.wikimedia.org/wikipedia/commons/7/7b/Lego_Turing_Machine.jpg

Addition in Turing Machine

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 24

Algorithm complexity
Complexity of an algorithm is the amount of resources it requires to
run.

Turing Machine is a simple model for comparing algorithms. Others
include Random Access Machine, recursive functions or lambda
calculus.

We count the numer of operations the algorithm needs to execute
for a given input.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 25

Pros and Cons
Turing Machine can be used to
calculate anything.

A programming language is Turing
Complete if it’s capable of
calculating anything which can be
calculated with a Turing Machine.

It’s very simple to understand and
implement.

Programming is hard.

It’s nearly impossible to prove
anything about the execution in an
automated manner.

Can easily become
incomprehensible when generated
automatically.

Requires step-by-step thinking – we
need to describe the algorithm
precisely.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 26

From function up to
Typed Lambda Calculus
LET'S MAKE IT PROVABLE!

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 27

Lambda Calculus
Another model of computation.

Based on function abstraction and
application.

Can simulate any Turing Machine.

3 rules (on the right).

In short: we have a function which
accepts one parameter, contains
any function as a body, and can call
other functions.

No types, no constants, no literals.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 28

Variable
◦ x

Abstraction
◦ (𝜆𝑥.𝑀)

◦ M is lambda term. x is bound in the expression

◦ Think of: function(x) { M }

Application
◦ (𝑀 𝑁)

◦ Applying a function M to an argument N

◦ Think of: M(N) where M is function

Beta reduction
Used to replace occurrences of a variable in a term with the variable.

𝜆𝑛. 𝑛 × 2 5 → 5 × 2

Basically a variable substitution.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 29

What can we do with that?
Literals:

𝑇𝑅𝑈𝐸 = 𝜆𝑥. 𝜆𝑦. 𝑥

𝐹𝐴𝐿𝑆𝐸 = 𝜆𝑥. 𝜆𝑦. 𝑦

Logical operators:

𝐴𝑁𝐷 = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑞 𝑝

𝑂𝑅 = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑝 𝑞

𝑁𝑂𝑇 = 𝜆𝑝. 𝑝 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸

𝐼𝐹𝑇𝐻𝐸𝑁𝐸𝐿𝑆𝐸 = 𝜆𝑝. 𝜆𝑎. 𝜆𝑏. 𝑝 𝑎 𝑏

Let’s take 𝐴𝑁𝐷 with first argument 𝑇𝑅𝑈𝐸. We should
return second argument as true && x reduces to x.

𝜆𝑝. 𝜆𝑞. 𝑝 𝑞 𝑝 for 𝑝 = 𝑇𝑅𝑈𝐸

𝜆𝑞. 𝑇𝑅𝑈𝐸 𝑞 𝑇𝑅𝑈𝐸 we substitute first TRUE

𝜆𝑞. (𝜆𝑥. 𝜆𝑦. 𝑥 𝑞 𝑇𝑅𝑈𝐸) we ignore second TRUE

𝜆𝑞. 𝑞

Notice that the result is still a function. If we substitute
𝑞 with 𝑇𝑅𝑈𝐸 then we end up with 𝑇𝑅𝑈𝐸

𝑇𝑅𝑈𝐸 is „the literal” for truthy value. It’s like true in
other languages, even though it’s a function.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 30

What can we do with that?
Numbers:

◦ 0 = 𝜆𝑓. 𝜆𝑥. 𝑥 (notice that this is equal to FALSE).

◦ 1 = 𝜆𝑓. 𝜆𝑥. 𝑓 𝑥

◦ 2 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)

◦ 3 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑓 𝑥)

So number x is a function applied x times.
◦ 𝑆𝑈𝐶𝐶 = 𝜆𝑛. 𝜆𝑓. 𝜆𝑥. 𝑓 𝑛 𝑓 𝑥

But what are 𝑓 and 𝑥 here? They are functions.

We won’t get to something „irreducible” or „without
variables”.

We’ll get to some form which is equivalent to another
one.

𝐼𝑆𝑍𝐸𝑅𝑂 = 𝜆𝑛. 𝑛 𝜆𝑥. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸

Let’s calculate ISZERO for zero:

𝜆𝑛. 𝑛 𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 0 substitute 0

𝜆𝑓. 𝜆𝑥. 𝑥 𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 notice that f is ignored

𝜆𝑥. 𝑥 𝑇𝑅𝑈𝐸 reduce again

ISZERO for one:

𝜆𝑛. 𝑛 𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 1 substitute 1

𝜆𝑓. 𝜆𝑥. (𝑓 𝑥) 𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 f is not ignored

𝜆𝑥. (𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑥) 𝑇𝑅𝑈𝐸 reduce again

𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸 𝑇𝑅𝑈𝐸 reduce again

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 31

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 32

3 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑓 𝑥)

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 33

3 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑓 𝑥)

𝐼𝐼𝐼

Data structures
Structures are implemented in the same way.

We define some well-known literals and then
provide accessors.

We start with basic ones like tuples. Then we
move on to records, intersections and others.

By building more and more data structures we
get Typed Lambda Calculus.

𝑃𝐴𝐼𝑅 = 𝜆𝑥. 𝜆𝑦. 𝜆𝑓. 𝑓 𝑥 𝑦

𝐹𝐼𝑅𝑆𝑇 = 𝜆𝑝. 𝑝 𝑇𝑅𝑈𝐸

𝑆𝐸𝐶𝑂𝑁𝐷 = 𝜆𝑝. 𝑝 𝐹𝐴𝐿𝑆𝐸

𝑁𝐼𝐿 = 𝜆𝑥. 𝑇𝑅𝑈𝐸

𝑁𝑈𝐿𝐿 = 𝜆𝑝. 𝑝 (𝜆𝑥. 𝜆𝑦. 𝐹𝐴𝐿𝑆𝐸)

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 34

Object-Oriented Programming
OOP can be implemented in Lambda Calculus in multiple ways.

One of the ideas:
◦ An object with fields is a tuple with components

◦ Each getter and seter is a selector of the tuple’s component

◦ Inheritance is implemented as unions and intersections of objects

Similarly, we can translate Lambda Calculus to OOP.

At some point it’s not about „what we can do” (because they
become equivalent) but „how readable that is”.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 35

Dependent types
These are types whose
definitions depend on a value.

They are used to encode
quantifiers (for all, exists).

They allow to verify that the
application modifies state
correctly.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 36

Combinatory Logic
We showed that it’s possible to
calculate anything with just one
instruction in imperative
programming.

A lambda in Lambda Calculus is
allowed to have basically any body.

One might say that it’s too much!

There are other systems apart from
SKI and SK, for instance BCKW.

Identity combinator:
◦ 𝐼 = 𝜆𝑥. 𝑥

Constant:

◦ 𝐾 = 𝜆𝑥. 𝜆𝑦. 𝑥

Generalized application (apply x to y inside the
environment z):

◦ 𝑆 = 𝜆𝑥. 𝜆𝑦. 𝜆𝑧. 𝑥 𝑧 𝑦 𝑧

𝐼 can be represented with composition of 𝑆 and 𝐾
so we need only two functions.

Number two:

2 = 𝑆 𝑆 𝐾𝑆 𝐾 𝐼

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 37

Pros and Cons
We can prove our programs
work.

We can effectively compose
concepts to build more
complex abstractions.

It’s all based on maths so
computers can reason about
that.

You can’t „hack” things in the
middle. You can’t cheat on math.

It requires a lot of discipline. Just
like you may be tired of showing
the compiler that your JSON is of
some type – you’ll need to do way
more to show that mathematically.

It cannot be executed directly on
the CPU (even with SECD machine
or Krivine machine).

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 38

Church-Turing thesis
It states that a function on the natural
numbers can be calculated by an effective
method if and only if it is computable by a
Turing Machine.

This means that whatever we can calculate
with Turing Machine (= with imperative
programming) can be calculated with lambda
calculus.

It is also equivalent to general recursive
functions – partial functions from natural
numbers to natural numbers that are closed
under basic operations.

What is an effective method?

It’s something that a human can do with pen
and paper:

◦ It consists of a finite numer of steps

◦ It always finishes

◦ It always produces a correct answer

◦ It is sufficient to follow rules rigorously (no need
for ingenuity)

We do not have a formal, provable definitione
of effective method. Whole computer science
is based on these 3 intuitive approaches.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 39

Declarative forms and
DSL
LET'S MAKE IT READABLE!

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 40

Relational databases
We know data is there.

But we are not interested in
how it’s accessed or how to
calculate results – twelve laws
of OLAP by Edgar Codd.

We just want to define what
the result is and get it.

Alpha language:

http://www.inf.unibz.it/~franconi/teaching/2006/kbdb/Codd72a.pdf

QUEL:

SEQUEL later named SQL (pronunced Es Kju El):

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 41

http://www.inf.unibz.it/~franconi/teaching/2006/kbdb/Codd72a.pdf

3-satisfiability (3SAT)
We have a set of binary variables.

We have set of clauses – disjunctions of some variables.

𝑥 𝑂𝑅 𝑦 𝑂𝑅 ~𝑧

We want to find values for variables such that each clause is
satisfied (returns true).

If clauses are limited to at most three literals then we get
3SAT.

One of the most important NP problems.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 42

Integer Linear Programming (ILP)
We have variables which can be real or integer.

We have set of linear formulas
◦ So we can add variables

◦ And we can multiply variables by constants

We can bound any formula with ≤ or ≥

We want to find a solution to the problem
(and optimize some goal function).

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 43

Why are they useful?
For some problems we can
define the solution but we don’t
know how to calculate it.

We decouple problem definition
from the problem calculation.

We can translate problems
between models and use various
solvers.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 44

http://www.shivakasiviswanathan.com/MILCOM11.pdf

Behavior-Driven Development tests
Allows for writing tests in a
plaintext form.

Text is then translated into
method invocations.

This improves collaboration
between programmers and non-
technical people.

Based on TDD and DDD,
especially Ubiquitous language.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 45

Domain-specific languages (DSL)
Much more expressive in their domain.

Less comprehensive for people from the outside.

Examples include HTML, scripting languages for game engines (like
Unreal Engine), statistical modeling languages (R), Infrastructure-as-
a-Code (IAAC) languages and more.

We can focus on the problem, not on the syntax!

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 46

Summary
All these examples can be interchanged – nothing stops us from
writing BDD tests in an assembly language.

The point is to use the right tool and to use it in the right way.

However, the problem is always the same. The only thing that
changes is our perception.

We need to change the view and develop the right abstraction.

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 47

Q&A

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 48

References
Luca Cardelli, Martin Abadi - „A Theory of Objects (Monographs in Computer Science)”

Benjamin C. Pierce - „Types and Programming Languages”

Benjamin C. Pierce - „Advanced Topics in Types and Programming Languages”

J. Roger Hindley - „Lambda-Calculus and Combinators: An Introduction”

Adam Furmanek - „Applied Integer Linear Programming: From Boolean Algebra to
Nondeterministic Turing Machine”

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 49

References
https://crypto.stanford.edu/~blynn/lambda/ - Lambda Calculus

https://projectultimatum.org/cgi-bin/lambda - Lambda Calculus

https://komiamiko.me/math/ordinals/2020/06/21/ski-numerals.html - Combinatorial Logic

https://drops.dagstuhl.de/opus/volltexte/2021/14064/pdf/LIPIcs-ECOOP-2021-21.pdf - OOP in
Lambda Calculus

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 50

https://crypto.stanford.edu/~blynn/lambda/
https://projectultimatum.org/cgi-bin/lambda
https://komiamiko.me/math/ordinals/2020/06/21/ski-numerals.html
https://drops.dagstuhl.de/opus/volltexte/2021/14064/pdf/LIPIcs-ECOOP-2021-21.pdf

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

23.05.2022 MOV, LAMBDA, DSL - ADAM FURMANEK 51

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

