Integer Linear
Programming

CONTACT@ADAMFURMANEK.PL
HTTP:.//BLOG.ADAMFURMANEK.PL
YFURMANEKADAM

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.

Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl
4 furmanekadam Random IT Utensils

IT, operating systems, maths, and more

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda

Declarative programming at a glance.

Some theory.
Real life example.
Implementation consideration.

Summary.

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Declarative
Drogramming

Declarative programming

Paradigm that expresses the logic of a computation without
describing its control flow.

Declarative programming often considers programs as theories of a
formal logic, and computations as deductions in that logic space.

A high-level program that describes what a computation should

perform.
SELECT * FROM Orders

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

05.05.2021

Declarative program

ming — wkt

V7

Decouples problem formu

ation from so

ving process.

Solving part can be replaced without modifying the

formulation.

Easier to optimise algorithms for because ,the goa

is understandable for the machine.

I”

Can be used with little to no programming skills.
Sometimes we don’t know how to solve it.

Example — RTS game

We are playing RTS game.

We are allowed to hire footmen and archers.

Every footman costs 10 gold and 30 food. Every archer costs 20 gold, 25 food,
and 10 wood.

Footman’s attack is equal to 5, archer’s attack is equal to 7.

Our population limit is set to 200 units. Every footman ,costs” 1 unit, every
archer ,,costs” 2 units.

We have 1000 gold, 1000 food, and 200 wood. We want to get strongest
possible army.

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 7

Units
—-aa_-m--m-

Footman
Archer 20 25 10
Footman 5 1
Archer 7 2
_ Available gold Available food Available wood m
Constraint 1000 1000

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 8

Variables

Variables:

Constraints:

Target value:

05.05.2021

[— footmen
a — archers

f+ 2-a <200
10-f +20-a < 1000
30 f +25-a < 1000
10-a < 200

5-f+7-a

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

// population
// gold

// food

// wood

static woid Main()

1

var context = SclverContext.GetContext();
var model = context.CreateModel();
var footmen = new Decisicn{Domain.Integer, "footmen™};
var archers = new Decisicn{Domain.Integer, "archers™};
model.AddDecisions (footmen, archers);
model.AddConstraint("footmen_lower_bound", @ <= footmen);
model.AddConstraint("archers_lower_bound", @ <= archers);
model.AddConstraints ("population”, @ <= footmen
model.AddConstraint(“gold”, 18 * footmen + 28 * archers <= 1888);
model.AddConstraint("food", 38 * footmen + 25 * archers <= 1888);
model.AddConstraint("wood", 18 * archers <= 288);
model.AddGoal("goal™, GoalkKind.Maximize, 5 * footmen + 7 * archers);
using (var writer = File.CreateText("problem.mps™}))
1

context.SaveModel(FileFormat.FreeMPS, writer);
¥

var solution =

[O o B |
o o O 0
J 3 3 3
W\okow\mA
[oe S i R I

Conso

context.Solve();

le.WriteLine(%"Quality: {solution.Quality}™);
le.WriteLine(%"Footmen: {footmen}™);
le.WriteLine(%"Archers: {archers}™);
le.WriteLine(%"Solution: {soclution.Goals.First()}");

le.WriteLine(%"Report: {soclution.GetReport()}");

05.05.2021

+ 2 * archers, footmen + 2 * archers <= 288);

-

||:||IEI|J§-]1

Bl C\Windows\systerm32\omd.exe

Quality: Optimal
: 16
28
===8plver Foundation Service Report===
7-22-.2019 B:11:14 PH
Uersion: Microsoft Solver Foundation 3.68.2.108879 Enterprize Edition
Model Mame: DefaultModel
Capahilities Applied: MILP
Sfolve Time <ms=>: 218
Total Time (mez>: 218

Solve Completion Status: Optimal

Solver Selected: Microsoft.SolverFoundation.Solvers.SimplexSoluer
Directives:

Microszoft_SolverFoundation.Services _Directive

Algorithm:= Dual

Double

-> 2 + 8

Arithmetic:
Jariahles:
Rows =
Monzeros:

Pricing <double?: SteepestEdge
Basis: Current

Pivot Count: 1

Phase 1 Pivots: 1

Phase 2 Pivots:- @

Factorings: 4 + @

Degenerate Pivots: 8 ¢
Branches: 3

===8olution Details===

Goals:

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Example

QR
< N
QS

M O N E Y

Example

— O
= O
oo O
v =]

I 0 6 o 2

S E N D

+ M O R E

Example - M O N E Y
Variables:

S,E,N,D,M,O,R,Y €10, ...,9} and all different

Constraints:

1000S +100L£ + 10N + D +
1000M + 1000 + 10R + £ =
10000M + 10000 + 100N +10£ +Y

x1+x2=13
X3 + X4 + X5 +I2:13

Example X3+ X4+ X + a7 = 13

X3+ X4+ X6 +x7 =13

Xg + Xg + X9 + X7 = 13
1 X9 x11 + X190 +x7 =13

X1+ X3+ Xg + X1 =13

T3 =5 X1+X4+X9+I11=13
L4
o x1+x4+xm=13
I8 zg
L7 x1+x5+x6+x10:13
T 10
1 XQ+I6+)C]U=13

.X.'2+.I7=13

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 14

Real life examples

RTS game = factory production allocation:
o We have available resources

° We have facitilies
o We want to plan work to maximize the production

Send more money = pattern recognition:
> We know structure of a problem but doesn’t understand the latent factors

Floor tiling = microchip transistor layout:
o We have transistors and gates of given size
> We want to minimize heat emission and the board size

Others: BTS placement, power plant rooms layout, scheduling systems, items personalization
and many more.

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Some theory

MIXED INTEGER LINEAR PROGRAMMING

- - a

WHATAYOU'RE TALKIN

-
P
-

Mixed Integer Linear Programming

Programming in mathematics means finding a solution to
optimization problem.

Linear Programming is a class of a problems with only linear
constraints and with linear cost function.

Mixed Integer Linear Programming is a class of a problems
with integer constraint for some of variables.

Constraints

We can add two variables: We cannot multiply variables:
a+b a-b
We can multiply variable by We cannot use strict constraings
constant: (greater than, less than, not
5-a equal)
a <10

We can constrain variable with
lower/upper bound:
a<’7/

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Cost function

Notice that not hiring anyone was also a solution!

Problem may have zero, one, multiple or infinitely
many solutions. We need to compare them.

We use cost function to specify which one of them is
the best.

Cutting plane method

Algorithms

Basic algorithms:

o Cutting plane methods — we solve the problem without integer constraints
(continuous version of the problem), and next we cut the plane to get smaller
problem

> Branch and bound — we solve the problem without integer constraints, and
next we bound some variables and perform next iteration

MILP is NP-complete and we sometimes use heuristics:
> Tabu search

> Simulated annealing

> Ant colony optimization

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 22

What can we do?

WE WILL IMPLEMENT

Boole’s logic.
Multiplication.

Comparison
operators.

05.05.2021

WE WILL NOT IMPLEMENT

Arithmetic: division, remainder, exponentation, roots.
Comparisons: min, max, absolute value.
Number theory: factorial, GCD.

Algorithms: if condition, sorting, loops, lexicographical
comparisons, Gray’s code, linear regression.

Set operators: SOS type 1 and 2, approximation.

Graph operators: MST, vertex/edge cover, max flow,
connectivity, shortest path, TSP.

Turing machine.

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 23

Conjunction — AND operator (&&)

We have two variables: a, b.

We want to create variable x which is
x =a&&b.

Formula:

O0<a+bhb —2x<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If both a and b are 1 then x must be 1.

If x was O:

0<1+1-2-0<1
0<2-0<51
0<2<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If both a and b are 1 then x must be 1.
If xis 1:

0<1+1-2-1<1
0<2-2<1
0<0<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If either a or b is 1 then x must be O.

If x was 1:

0<1+0-2-1<1
0<1-2<1
0<-1<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If either a or b is 1 then x must be O.
If x is O:

0<1+0-2-0<1
0<1-0<51
0<1<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If both a or b are 0 then x must be 0.

If x was 1:

0<0+0-2-1<1
0<0-2<1
0<-2<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If both a or b are 0 then x must be 0.
If x is O:

0<0+0-2-0<1
0<0-0<1
0<0<1

Conjunction — AND operator (&&)
0<a+b —2x<1

If both a and b are 1 then x must be 1.
If either a or b is 1 then x must be O.

If both a or b are 0 then x must be O.

Conjunction & Disjunction

Two variables conjunction:
0<a+b —-—2x<1

n variables conjunction:
0<a;+a,+az;+ ..+a,—nx<n-—1

Two variables disjunction:
—-1<a+b —2x<0

n variables disjunction goes the same way

Negation, exclusive or, implication

Negation:
x=1—a
Implication:
a=>b =~aVb
Exclusive or:

(~aAb)V (aAn~b)

Multiplication of two binary variables is
their conjunction.
a-b=aAb

Multiplication of integer variables

Multiplication is possible when we know the maximum
possible value of a variable.

We set the upper bound and perform the long
multiplication.

It is rather slow approach, it requires O (n?) temporary
variables.

Value decomposition

We decompose the variable to extract digits.

We assume the maximum possible value, because we need to know
the number of digits.

Decomposition is straghtforward:

b=by+2-by+4-b,+8 b3+ ..+2"1-b,_4

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 36

05.05.2021

0-0 0-0 1-0 1-0
0-0 0-0 1-0 1-0

o-1 0-1 1-1 1-1

+ 0-0 0-0 1-0 1-0

as a2 ai ag
b3 bo b1 bo
agbo azbg albg aobo
agbl agbl albl aobl
agbg agbg albg agbg
+ aszbz asbz aibs apbs

Multiplication

a-b=

((ao N\ bo) + 2 - (ao A bl) + 4 - (ao A bz) + ...+ 271—1 : (ao N bn—l))

+2- ((ay Ab) + 2 (ay Aby) +4 - (ay Aby) + 2" (ay Aby_y))
+4 - ((az Abg)+2-(az Aby) +4-(az Aby) + ..+ 2" - (az A bn—l))
I coo

+ Zn_l((an_l N\ bo) +2- (an_l N\ bl) + 4 - (an_l N bz) + ...+ 271—1 ‘ (an_l N bn—l))

It can be represented as:

n—1 n—1
a-b=22i ZZJal/\b]
=0

j=0

05.05.2021

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 39

Comparison operators

To calculate whether a > b we can use:

0<b —a+2"lxy<o2n-1_1

To check whether numbers differ:
x=(@>b)Vv(b>a)

There are libraries doing that!

IVariable sumOfXAndY = x.Operation(OperationType.Addition, y);

IVariable anotherSumOfXAndY = solver.Operation(OperationType.Addition, x, y);
IVariable negationOfX = x.Operation(OperationType.Negation);

IVariable multiplicationOfXAndY = y.Operation(OperationType.Multiplication, x);
IVariable isYGreaterThanX = y.Operation(OperationType.IsGreaterThan, x);

https://github.com/afish/MilpManager

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 41

Scheduling System

REAL LIFE EXAMPLE

ldea

At the beginning of every term students must be assigned to
classes.

It is hard to make them happy because some of them work,

some of them prefer to sleep long, some of them prefer to
have lots of days off.

We can try to represent the requirements as a MILP
program and find the optimal solution.

Usage
We ask students to assign preferences points to every
possible class.

The more points assigned the more student wants to
be assigned to that class.

We need to take care of rooms occupancy limits,
collisions etc.

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 44

05.05.2021

Schedule

We are given a schedule of classes in courses

Every class has associated day (Monday — Friday), hour (e.g.,
9:30 AM) and duration (e.g., 1:30 hrs).

Every class has associated room with occupancy limit.

Constraints

Variables.

Exactly one class in one course.
Collisions.
Rooms occupancy limits.

Cost function.

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK 46

05.05.2021

Variables

For every person, every course, every class we declare
binary variable.

Value 1 means that the student is assigned to this class.
We define:

xcourse,class,student

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Exactly one class for a student

Every student must attend exactly one class in
course.

For every course we need to assign student to exactly
one class.

/\ : : xCOU?‘Se,ClaSS,Student =1

course,student class

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Collisions

Student cannot be in two places at the same time.

/\ (courseq, class,), (course,, class,) colliding

/\ xcoursel,classl,student + xcoursez,classz,student <1
student

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Room occupancy limit

Every room has an occupancy limit.

/\ E Xcourse,class,student =S course,class

course,class student

where S;4yrse class Means the size of the room

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

05.05.2021

Preferences cost function

Every student assigned points to classes. We want to
maximize the sum of those points.

E pcourse,class,student) xcourse,class,student

course,class,student

where pcourse class student Me€aNs number of points

INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

05.05.2021

What now?
Students: 150

Courses: 15

Classes: 9 per course
Problem size: ~40 000 variables.

Solving time: 2 seconds.

This solution is optimal, we won’t get any better than that!

Implementation
consideration

GUROBI

OPTIMIZATION

0 Google
Optimization
Tools

SERVER

Licenses

Various approaches:
°License per workstation
oLicense per person
°Licensing server with tickets

Licenses for universities and research work.

Licenses for students.

Number of instances solved

300

250

200

150 |

100

50

Branch and bound type solvers

| | | | !
S Y ~—| BARON g306)
— —_ —r | SCIP (295)
—l'_’r-_ l—l"-.-‘_'_
”] .| Minotaur-BB (258)
5 o | ANTIGONE (236)
= L — BONMIN-BB (233)
— e _,__,.-—i BONMIN-HYB (228)
e Y o~ Knitro-BB (223)
= | il e SO | SBB (223)
il T ﬁﬁj'_'_'ﬁ#—f— '+ =a === Juniper (189)
f{; S ,_.._'F; T LINDO (163)
__.a?"ﬂ | L e 2 | g ~r——=| Couenne (155)
/-—_’_P LB r '.: — :"’-‘H'_’FH—J—F'—.-"
....... qe L T | e —
nt bl —-ﬁ-'//'l"- - = [. |
L .'7—7' - o -
.—l''_-'_‘_‘_
'J’_Fl- | 1 t_ﬂ_ I \ I 1 J | I
4 6 8 10 15 30 60 120 240 480 900
Solution time (s)
——— ANTIGONE —— BARON —— BONMIN-BB ::::--: BONMIN-HYB Couenne Knitro-BB
—— LINDO - - = Juniper Minotaur-BB —— SBB — SCIP

/R

Mixed Integer Linear Programming

» Cbc [AMPL Input][GAMS Input][MPS Input]

SERVER o« CPLEX [AMPL Input][GAMS Input][LP Input][MPS Input][NL Input]

» feaspump [AMPL Input][CPLEX Input][MPS Input]

» FICO-Xpress [AMPL Input][GAMS Input][MOSEL Input][MPS Input][NL Input]
« Gurobi [AMPL Input][GAMS Input][LP Input][MPS Input][NL Input]

« MINTO [AMPL Input]

» MOSEK [AMPL Input][GAMS Input][LP Input][MPS Input][NL Input]

» proxy [CPLEX Input][MPS Input]

» gsopt _ex [AMPL Input][LP Input][MPS Input]

» scip [AMPL Input][CPLEX Input][GAMS Input][MPS Input][OSIL Input][Python Input][ZIMPL Input]
» SYMPHONY [MPS Inpuf]

https://neos-server.org/neos/solvers/index.html

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Beyond MILP

SAT/SMT.
Quadratic programming.

Prolog.

Specialized models for various problems.

Favorable Adjustment of Periods for Reduced Hyperperiods in
Real-Time Systems

SCOPES ’19, May 27-28, 2019, Sankt Goar, Germany

Our approach is not limited to strictly-periodical systems. Whether
each task has exactly one period associated to it, or whether it is
triggered by a more complex activation pattern composed of multi-
ple basic periods is not critical for applying the presented approach.
However, associating one dedicated period T; to each task 7; eases
both notations, applicability to common task set generators like
UUnifast and comparison to previous work.

Capital letters like, e.g., T; are used to express constants in the
upcoming ILP model. ILP variables are denoted by lower-case letters
in any formulas, e.g., f;.

Dominic Oehlert, Arno Luppold, and Heiko Falk

Obviously, Eq. (7) is not linear, as two ILP variables are multiplied.
Yet, we show in the following how the multiplication of two ILP
variables can be described efficiently using only linear terms.

Unsigned Multiplication inside an ILP: The following principles

were introduced first by Furmanek [1]. The key idea is to execute

the multiplication usimg only binary values. we will start with the
multiplication of two unsigned ILP variables a and b.

y=a-b %)

Caalommring man Hler thhn vrawiahla bhio dacasmncecad o tha haeca D ae olhoera

Subsequently, we set up a constraint for each task 7; to find a
common multiple of all periods ;.

ti+fi=g. 0<i<N (7)
>0 0<i<N ®)

The ILP variable f; represents any integer factor which is multiplied
with the period #; to achieve a common multiple g of all periods.
The variable g is bound to integer values as well.

min : g (14)

We choose to describe the optimization problem using ILP in-
stead of quadratic constrained programming (QCP) to avoid convexity-
requirement issues of solvers. It turned out that both state-of-the-art

optimizers CPLEX and Gurobi are not capable of solving the pre-
sented set of constraints (without re-formulating Eq. (7)), as they
do not fulfill their QCP solver’s requirements. Yet, both are capable
of solving the ILP problem using the presented re-formulations.

Summary

Declarative programming allows you to focus on a
oroblem, not on an algorithm!

f something is slow — just replace the solver.

There are many models, choose as powerful as you
can (to make modelling easy) and as primitive as
possible (to make solving fast).

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

Q&A

References

Alexander Schrijver — ,Theory of Linear and Integer Programming”

Dennis Yurichev — ,,SAT/SMT by example”
Adam Furmanek — ,,.NET Internals Cookbook”

http://blog.adamfurmanek.pl/2015/08/22/ilp-part-1/ — a lot about ILP

https://github.com/afish/MilpManager — library for modelling

https://neos-server.org/neos/solvers/index.html — NEOS cloud for solving problems

https://tore.tuhh.de/bitstream/11420/2548/1/201905-scopes-oehlert.pdf — Practical usage of
ILP versus QP

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

http://blog.adamfurmanek.pl/2015/08/22/ilp-part-1/
https://github.com/afish/MilpManager
https://neos-server.org/neos/solvers/index.html
https://tore.tuhh.de/bitstream/11420/2548/1/201905-scopes-oehlert.pdf

Random IT Utensils

Thanks!

CONTACT@ADAMFURMANEK.PL
HTTP://BLOG.ADAMFURMANEK.PL
FURMANEKADAM

05.05.2021 INTEGER LINEAR PROGRAMMING - ADAM FURMANEK

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

