
Debugging Memory 
Leaks in .NET
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK05.05.2021 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam


About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 2

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam


Agenda
Garbage Collection:

◦ Reference counting

◦ Mark and Swep, Stopping the world, Mark and Sweep and Compact

◦ Generational hypothesis, card tables

.NET GC:
◦ Roots, types

◦ SOH and LOH

◦ Finalization queue, IDisposable, Resurrection

Demos:
◦ WinDBG

◦ Event handlers

◦ XML Generation

◦ WCF

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 3



Theory

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 4



Reference counting
Each object has counter of references pointing to it.

On each assignment the counter is incremented, when variable goes out of scope the counter is
decremented.

Can be implemented automatically by compiler.

Fast and easy to implement.

Cannot detect cycles.

Used in COMs.

Used in CPython and Swift.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 5



Mark and Sweep
At various moments GC looks for all living objects and releases dead ones.

Release means mark memory as free. There is no list of all alocated objects! GC doesn’t know
whether there is an object (or objects) or not.

If object needs to be released with special care (e.g., contains destructor), GC must know about
it so it is rememberd during allocation.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 6



Stop the world
GC stops all running threads.

SuspendThread: This function is primarily designed for use by debuggers. It is not intended to be 
used for thread synchronization. Calling SuspendThread on a thread that owns a synchronization 
object, such as a mutex or critical section, can lead to a deadlock if the calling thread tries to 
obtain a synchronization object owned by a suspended thread. To avoid this situation, a thread 
within an application that is not a debugger should signal the other thread to suspend itself. The 
target thread must be designed to watch for this signal and respond appropriately.

How does GC know whether it is safe to pause the thread? Safepoints.

What if the thread doesn’t want to go to the safepoint? Thread hijacking.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 7



Mark and Sweep
Can be executed without stopping the world:

◦ If we mark object as alive and in fact it is not (false positive), it will be released next time

◦ If we allocate new object during GC phase, GC needs to know about it (so GC hijacks allocation process)

◦ Finding roots might be a bit difficult (since they can move to and from registers and be optimized away)

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 8



Mark and Sweep and Compact
When Mark and Swep is done (e.g., memory is ready to be released), objects are compacted.

Compaction might take significant amount of time so there are heuristics to avoid it (e.g., LOH).

Objects are copied from one place to another and all references are updated.

Can be executed without stopping the world:
◦ Memory page with object is marked as read-only

◦ When thread tries to access it, GC handles page fault and redirects read to other place

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 9



Generational hypothesis
Reality shows that objects can be divided in two groups:

◦ Those dying very quickly after allocation

◦ Those living very long (e.g., throught whole application execution)

We can come up with hypothesis: if object survives first GC phase, it will live long.

Idea: let’s divide objects into generations (0, 1 and 2 in .NET, eden and tenured in CMS, eden, 
survivor and tenured in G1).

Benefits:
◦ We can run GC more often and focus only on newly allocated objects

◦ We don’t need to scan whole memory (since allocations occur in small address space)

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 10



Bonus chatter: back references

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 11



Card tables
Card table is a set of bits representing whole memory.

Each bit says whether particular region of memory (typically 256B) was modified.

When we perform allocation of any time, it is not executed directly (e.g., as mov in machine
code) but is redirected to .NET helper method.

This method assigns the variable and stores the bit in card table.

GC then uses card tables to avoid scanning whole memory.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 12



Interesting things not covered
Tri-color marking.

Types of weak references.

Internal pointers.

Differentiating pointers from value types.

Tagged pointers.

Mark and don’t sweep.

Hard realtime GC, Metronome algorithm.

GC without stop the world.

GC and structures like XOR list.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 13



.NET

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 14



GC in general
GC:

◦ checks JIT compiler, stack, handles table, finalizer queue, static variables and registers

◦ might not stop the threads running native code

◦ leaves cookies on the stack to find out transitions between native and managed code

◦ doesn’t release once allocated blocks, this is called VM_HOARDING

◦ can execute finalizer even when there is other object’s method running

◦ can pin non-movable objects

◦ can be turned off

◦ supports weak references

◦ uses three generations (0, 1, and 2)

.NET doesn’t use Frame Pointer Omission.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 15



GC phases
Marking, usually requires stop the world for generation 0 or 1.

Relocating (updating pointers).

Compacting.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 16



GC Types
Workstation

◦ Can be concurrent (default on client machines)

◦ Used always on uniprocessor machine

◦ Collection is performer on calling thread

◦ GC has the same priority

◦ Doesn’t stop threads running native code

Server
◦ Works on mulitple dedicated threads with priority THREAD_PRIORITY_HIGHEST

◦ Each procesor has separate stack and steap

◦ Stops all threads

Background GC
◦ Works in Workstation and Server

◦ Collects only generation 2

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 17



GC Types – Workstation non-concurrent

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 18



GC Types – Server non-concurrent

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 19



GC Types - Concurrent

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 20



GC Types — Workstation background

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 21



GC Types — Server background

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 22



SOH and LOH
Compacting big objects might take a lot of time.

Objects bigger than 85000 bytes are allocated directly in generation 2 (sometimes incorrectly called
generation 3) on the special area called Large Object Heap.

They are not compacted automatically, can be compacted on demand since 4.5.1.

Fun fact: arrays of 1000+ doubles are stored on LOH in 32-bit .NET Framework / Core.

These are all undocumented features and might change anytime.

Small Object Heap contains ephemeral segment for generations 0 and 1. Each new segment is
ephemeral, old ephemeral segment becomes generation 2 segment.

Ephemeral segment can include generation 2 objects.

GC can either copy objects to other generations or move whole segment to other generation.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 23



Generations
There are three generations: 0, 1, and 2. This can change!

Initally object is allocated in generation 0 or 2 (LOH).

Object is copied to generation 1 after GC.

Generations are calculated using addresses. Stack is in generation 2 because it doesn’t fit in any
other generation ranges.

It is possible to allocated reference object on a stack.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 24



Write barrier

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 25



05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 26



Pinning
.NET moves objects in memory which might cause problems (e.g., P/Invoke).

We can pin object in memory using fixed keyword or GCHandle.Alloc with type Pinned.

Problems:
◦ GC cannot move objects — fragmentation

◦ Ephemeral segment might become full

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 27



Weak references
Weak reference must be known to .NET and GC. It cannot be a simple pointer because:

◦ Objects are moved in memory (compaction) so GC needs to update the pointer — so weak reference
cannot be an IntPtr

◦ GC needs to be able to free the memory — so weak reference cannot be a typed reference

Weak reference ist stored as an IntPtr registered in GC.

Every access to weak reference requires asking GC whether the object is still there.

Important: we first need to copy weak reference to strong reference and after that ask wheter it
is still alive. Otherwise we might be evicted by GC.

Important 2: Dictionary<TKey, WeakReference> is not good as a cache. The proper way is to use
ConditionalWeakTable<TKey, TValue>

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 28



Finalization queue
Objects with finalizers are remembered by GC during allocation.

They are stored in finalization queue.

After mark phase, they are moved to f-reachable queue.

There is one separate thread for running finalizers. It can be blocked.

When closing application there is a 2 seconds limit for all finalizers to run.

Bonus chatter: which thread is responsible for closing the application?

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 29



IDisposable, Resurrection
When implementing IDisposable interface, object should be removed from finalization queue in 
Dispose method.

When implementing object pooling, object should be registered for finalization in finalizer.

These are ordinary cases in .NET, not some black magic stuff.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 30



Demos

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 31



Memory dump types
Created by Windows:

◦ Complete memory dump
◦ Contains absolutely everything

◦ Kernel memory dump

◦ Small memory dump
◦ 256 kB

◦ Contains loaded drivers, bugcheck (BSOD) code and critical kernel structures

◦ Automatic == kernel memory dump

◦ Active memory dump
◦ Ignores data for virtual machines

Memory dump is created in pagefile by default. Can be changed.

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 32



Memory dump types
Created by developer:

◦ Full dump
◦ Does not contain all informations

◦ Minidump
◦ Can be configured to contain everything

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 33



Creating memory dump in Windows
Memory dump can be created using:

◦ Task manager 
◦ Only full dump (?)

◦ Process Explorer
◦ Minidumps and full dumps

◦ ADPlus
◦ Minidumps and full dumps

◦ WinDBG
◦ Any type of dump

◦ .dump /mf <path>

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 34



WCF
var type = typeof (ClientBase<IBooking>);

var field = type.GetField("factoryRefCache", BindingFlags.Static | BindingFlags.NonPublic);

var cache = field.GetValue(null);

cache.GetType().GetMethod("Clear").Invoke(cache, new object[0]);

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 35



Q&A

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 36



References
Jeffrey Richter - „CLR via C#”

Jeffrey Richter, Christophe Nasarre - „Windows via C/C++”

Mark Russinovich, David A. Solomon, Alex Ionescu - „Windows Internals”

Penny Orwick – „Developing drivers with the Microsoft Windows Driver Foundation”

Mario Hewardt, Daniel Pravat - „Advanced Windows Debugging”

Mario Hewardt - „Advanced .NET Debugging”

Steven Pratschner - „Customizing the Microsoft .NET Framework Common Language Runtime”

Serge Lidin - „Expert .NET 2.0 IL Assembler”

Joel Pobar, Ted Neward — „Shared Source CLI 2.0 Internals”

Adam Furmanek – „.NET Internals Cookbook”

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md — „Book of the Runtime”

https://blogs.msdn.microsoft.com/oldnewthing/ — Raymond Chen „The Old New Thing”

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 37

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://blogs.msdn.microsoft.com/oldnewthing/


References
https://youtu.be/K1N9-9O6PrE — Adam Furmanek about DLL Injection

http://blog.adamfurmanek.pl/2016/03/26/dll-injection-part-1/ — the same as before

https://blog.adamfurmanek.pl/2017/04/15/debugging-wcf-high-memory-usage/ — memory
dump debugging

https://blog.adamfurmanek.pl/2016/04/23/custom-memory-allocation-in-c-part-1/ — allocating
object on a stack

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 38

https://youtu.be/K1N9-9O6PrE
http://blog.adamfurmanek.pl/2016/03/26/dll-injection-part-1/
https://blog.adamfurmanek.pl/2017/04/15/debugging-wcf-high-memory-usage/
https://blog.adamfurmanek.pl/2016/04/23/custom-memory-allocation-in-c-part-1/


References
https://channel9.msdn.com/Shows/Defrag-Tools — Defrag Tools on Channel 9

https://www.azul.com/files/c4_paper_acm1.pdf — C4 — Collector without stop the world on 
x86

https://en.wikipedia.org/wiki/Tracing_garbage_collection — GC overview

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 39

https://channel9.msdn.com/Shows/Defrag-Tools
https://www.azul.com/files/c4_paper_acm1.pdf
https://en.wikipedia.org/wiki/Tracing_garbage_collection


Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

05.05.2021 DEBUGGING MEMORY LEAKS IN .NET - ADAM FURMANEK 40

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

