
Throughout the entire process, a
key takeaway is that no thread is
dedicated to running the task.
H T T P S : / / D O C S . M I C R O S O F T.C O M / E N - U S / D OT N E T/ S TA N D A R D /A S Y N C - I N - D E P T H

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 1

https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth

Internals of Async
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

INTERNALS OF ASYNC - ADAM FURMANEK09.01.2024 2

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 3

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda
Primitves under the hood.

Task detail.

SynchronizationContext internals.

State machine.

Waiting for async void and handling exceptions

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 4

Primitives under the
hood

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 5

Native thread
Two types: foreground and background (don’t stop application from terminating).

Consists of Thread Kernel Object, two stacks (user mode and kernel mode) and Thread
Environment Block (TEB).

User mode stack by default has 1 MB, kernel mode has 12/24 KB.

Has impersonation info, security context, Thread Local Storage (TLS).

Windows schedules threads, not processes!

How many threads does the notepad.exe have?

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 6

How many threads does a notepad have?

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 7

Managed thread
Has ID independent of native thread ID.

Can have name.

Can be suspended but this should not be done! Can be
aborted by Thread.Abort but this doesn’t guarantee
anything.

Precommits stack when created.

Unhandled exception kills the application in most
cases.

In .NET 1 it was different:
◦ Exception in other thread was printed to the console and

the thread was terminated.
◦ Exception on the finalizer was printed to the console and

finalizer was still working.
◦ Exception on the main thread resulted in application

termination.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 8

ThreadPool
Different from Win32 thread pool. Used by tasks,
asynchronous timers, wait handles and
ThreadPool.QueueUserWorkItem.

Static class – you cannot just create your own thread pool.

Threads work in background, do not clear the TLS, have
default stack size and default priority.

One pool per process, its size depends on the size of the
virtual address space. Threads are created and destroyed
as needed using hill climbing algorithm.

Two types of threads: for ordinary callbacks and for I/O
operations.

Thrown exception is held until awaiting and then
propagated if possible (thrown out of band for async void).
In .NET 1 it was different - exception on a thread pool was
printed to the console and the thread was returned to the
pool.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 9

http://aviadezra.blogspot.com/2009/06/net-clr-thread-pool-work.html

ThreadPool implementation
public static class SimpleThreadPool
{

private static BlockingCollection<Action> _work = new BlockingCollection<Action>();
static SimpleThreadPool() {

for (int i = 0; i < Environment.ProcessorCount; i++) {
new Thread(() => {
foreach (var action in _work.GetConsumingEnumerable()) {

action();
}

}) { IsBackground = true }.Start();
}

}
public static void QueueWorkItem(Action workItem) { _work.Add(workItem); }

}

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 10

Asynchronous Programming Model
(APM)
BeginOperation returns an object implementing
IAsyncResult.

◦ Triggers the asynchronous calculations on different
thread.

◦ Can also accept a callback to be called when the
operation is finished.

IAsyncResult:
◦ Has some AsyncState.
◦ Contains WaitHandle which we can use to block the

application.
◦ Has flag indicating whether the operation is

completed.

EndOperation accepts IAsyncResult as a parameter
and returns the same as synchronous counterpart.

◦ Throws all exceptions if needed.
◦ If the operation hasn’t finished, blocks the thread.

var fs = new FileStream(@"C:\file.txt");

byte[] data = new byte[100];

fs.BeginRead(data, 0, data.Length,
(IAsyncResult ar) =>

{

int bytesRead = fs.EndRead(ar);

fs.Close();

}, null

);

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 11

Event-based Asynchronous Pattern (EAP)
MethodNameAsync.

◦ Triggers the operation on a separate thread.

MethodNameCompleted.

◦ Event fired when the operation finishes.

◦ Passes parameter AsyncCompletedEventArgs.

AsyncCompletedEventArgs:

◦ Contains flag if the job was cancelled.

◦ Contains all the errors.

◦ Has some UserState.

Can be canceled.

Can be used easily with BackgroundWorker.

backgroundWorker.DoWork += backgroundWorker_DoWork;

private void backgroundWorker_DoWork(object sender,
DoWorkEventArgs e)

{

// ...

}

private void
backgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{

// ...

}

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 12

Task-based Asynchronous Pattern (TAP)
Task.Run accepting delegate triggers the job:

◦ Equivalent to
Task.Factory.StartNew(job, CancellationToken.None, TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);

◦ Unwraps the result if needed (so we get Task<int> instead of Task<Task<int>>).

Task can be created manually via constructor and schedulled using Start method.

Can be joined by using ContinueWith.

Exceptions are caught and propagated on continuation.

Can be used with TaskCompletionSource.

Can be cancelled with CancellationToken.

Can report progress using IProgress<T>.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 13

Parallel Language Integrated Queries
(PLINQ)
Created when AsParallel called on IEnumerable. Can be reverted by AsSequential.

Operations defined in ParallelEnumerable class.

Can be ordered by calling AsOrdered.

Task merging can be configured by specifying ParallelMergeOptions.

Maximum number of concurrent tasks can be controlled using WithDegreeOfParallelism.

Parallelism is not mandatory! Can be forced with ParallelExcecutionMode.

Each AsParallel call reshuffles the tasks.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 14

async and await
await can be executed on anything awaitable – not necessarily a Task!

◦ Task.Yield returns YieldAwaitable

Duck typing - awaitable type must be able to return GetAwaiter() with the following:
◦ Implements INotifyCompletion interface

◦ bool IsCompleted { get; }

◦ void OnCompleted(Action continuation);

◦ TResult GetResult(); // or void

async means nothing — it only instructs the compiler to create a state machine.

We can make any type awaitable using extension methods!

Very similar to foreach.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 15

Awaiting on integer

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 16

Asynchronous code does not block
the operating system level thread.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 17

async in C#
async in C# is implemented as:
◦coroutine compiler level transformation with

◦service locator for promise orchestration and

◦statically bound promise factories

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 18

Task details
STATICALLY BOUND PROMISE FACTORIES

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 19

Two types of tasks
DELEGATE TASK – CPU-BOUND

Has some code to run.

Mostly in TPL world.

Created by TaskFactory or by constructor.

Used in PLINQ.

Can be scheduled and executed.

PROMISE TASK – I/O-BOUND

Signals completion of something.

Mostly in async world.

Task.FromResult
◦ Creates completed Task with result.

Task.Delay
◦ Equivalent of Thread.Sleep.

Task.Yield
◦ Returns YieldAwaitable.

◦ Schedules continuation immediately

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 20

Task state

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 21

https://blog.stephencleary.com/2014/06/a-tour-of-task-part-3-status.html

Task creation
CONSTRUCTOR

Do not use!
Creates only delegate Task.

Created Task is not scheduled so will not start
running unless asked to.

Created Task can be started by calling Start
method (and optionally providing a scheduler).

FACTORY

Task.Run()

Task.Factory.StartNew()

PLINQ

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 22

Task.ScheduleAndStart

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 23

TaskScheduler
Schedules tasks on the threads – it makes sure that the work of a task is eventually executed.

For TPL and PLINQ is based on the thread pool.

Supports work-stealing, thread injection/retirement and fairness.

Two types of queues:
◦ Global – for top level tasks

◦ Local – for nested/child tasks, accessed in LIFO order

Long running tasks are handled separately, do not go via global/local queue.

We can implement our own schedulers.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 24

TaskScheduler implementation

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 25

public class MyTaskScheduler : TaskScheduler
{

private readonly MyContext context;
public BlockingCollection<Task> tasks = new BlockingCollection<Task>();

protected override IEnumerable<Task> GetScheduledTasks()
{

return tasks;
}

protected override void QueueTask(Task task)
{

tasks.Add(task);
}

protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued)
{

return TryExecuteTask(task);
}

}

Task.ContinueWith
Creates a continuation that executes asynchronously when the target task complets

◦ Can specify CancellationToken

◦ Can specify TaskScheduler

◦ Can specify TaskContinuationOptions

Options:
◦ OnlyOnCompletion, OnlyOnCanceled, OnlyOnFaulted, NotOnCanceled, NotOnFaulted,

NotOnCompletion – to choose when it is supposed to run

◦ AttachedToParent – to create hierarchy of tasks

◦ ExecuteSynchronously, RunContinuationAsynchronously – to choose the thread running it

◦ HideScheduler – to run using the default scheduler instead of the current one

◦ LongRunning – more or less to run on dedicated thread

◦ Prefer fairness – to run in order

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 26

Task.ContinueWith

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 27

Task.Complete

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 28

Task.TrySetResult

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 29

Task.FinishContinuations

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 30

StandardTaskContinuation.Run

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 31

Disposing a Task
Task may allocated WaitHandle which implements IDisposable.

Disposing a Task in .NET 4 was making it unusable — we couldn’t even schedule continuation.

In .NET 4.5 this was changed, Task is still usable, only WaitHandle is not.

WaitHandle was created when Task.WaitAny or Task.WaitAll was called, this is no longer true.

Starting in .NET 4.5 WaitHandle is allocated only when it is explicitly accessed.

Summary:
◦ .NET 4 — don’t dispose unless you have to. Do so only if you are sure that the Task will never be used

again.

◦ .NET 4.5 — it shouldn’t make a difference so probably don’t bother.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 32

Task.Status Task.Id
State IsCompleted IsCanceled IsFaulted

RanToCompletion True False False

Canceled True True False

Faulted True False True

Other False False False

Generated on demand.

Can be reused — you can generate collision!

Independent from TaskScheduler.Id.

0 is not a valid identifier.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 33

ValueTask
Task is a class so it is allocated on the heap, and needs to be collected by the GC.

To avoid explicit allocation, we can use ValueTask which is a struct, and is allocated on the stack.

The trick is in the second constructor parameter — the token.

public ValueTask(IValueTaskSource<T> source, short token);

See https://github.com/kkokosa/PooledValueTaskSource

Conceptually it was used in Midori — .NET-based operating system implemented by Microsoft
Research.

„It still kills me that I can’t go back in time and make .NET’s task a struct” — Joe Duffy in
http://joeduffyblog.com/2015/11/19/asynchronous-everything/

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 34

https://github.com/kkokosa/PooledValueTaskSource
http://joeduffyblog.com/2015/11/19/asynchronous-everything/

ValueTaskSource
public interface IValueTaskSource<out TResult>

{

ValueTaskSourceStatus GetStatus(short token);

void OnCompleted(Action<object> continuation, object state, short token,

ValueTaskSourceOnCompletedFlags flags);

TResult GetResult(short token);

}

This can be reused! Whenever you await the task, it is allowed to reset the state.

await the task only once!

Getting result is allowed if and only if the result is available. GetAwaiter().GetResult() may not block, is not

required to be thread-safe, may crash your application.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 35

Results

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 37

SynchronizationContext
internals
SERVICE LOCATOR FOR PROMISE ORCHESTRATION

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 38

ISynchronizeInvoke – life before
SynchronizationContext
Provides a way to synchronously or asynchronously execute a delegate:

◦ InvokeRequired – checks if invoking is requred, effectively if we are running on the same thread

◦ Invoke – synchronous invocation

◦ BeginInvoke, EndInvoke – asynchronous invocation

It ties communication and threads.

If we don’t need specific thread – as in ASP.NET – we should not use ISynchronizeInvoke.

This is how SynchronizationContext emerged.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 39

ExecutionContext and other
Bag holding logical context of the execution.

Contains SynchronizationContext, LogicalCallContext, SecurityContext, HostExecutionContext,
CallContext etc.

Does not need to rely on Thread Local Storage (TLS) and is passed correctly through
asynchronous points — will follow to the other thread.

Before .NET 4.5 LogicalCallContext was performing shadow copies and couldn’t be used
between asynchronous points of invocation.

Starting in .NET 4.6 there is an AsyncLocal<T> class working as TLS variables for tasks.

Methods with Unsafe* do not propagate the context — for instance
ThreadPool.UnsafeQueueUserWorkItem.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 40

AsyncLocal<T>

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 41

SynchronizationContext
The SynchronizationContext class is a base class that provides a free-threaded context with no
synchronization:

◦ OperationStarted and OperationCompleted – handles notifications

◦ Send – synchronous message

◦ Post – asynchronous message

◦ Current – gets synchronization context for the thread

The purpose of the synchronization model implemented by this class is to allow the internal
asynchronous/synchronous operations of the common language runtime to behave properly
with different synchronization models

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 42

SynchronizationContext

When awaiting the awaitable type the current context
is captured. Later, the rest of the method is posted on
the context.

We can use ConfigureAwait(false) to avoid capturing the
context. Rule of thumb — always use it unless you are
sure that you need a context.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 43

SynchronizationContext
Synchronization context is a global variable.

If SynchronizationContext.Current is not null then this context is captured:
◦ For UI thread it is UI context – WindowsFormsSynchronizationContext, DispatcherSynchronizationContext,

WinRTSynchronizationContext, WinRTCoreDispatcherBasedSynchronizationContext
◦ Implemented via event loop, for instance.

◦ For ASP.NET request it is ASP.NET context — AspNetSynchronizationContext
◦ This can be different thread than original one, but still the request context is the same.

Otherwise it is current TaskScheduler:
◦ TaskScheduler.Default is the thread pool context.

◦ ASP.NET Core doesn’t have spearate context – no risk of deadlock, no need to use ConfigureAwait(false)

Each method can have its own context.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 44

SynchronizationContext
Specific thread
executing the code

Delegates
executed serially

Delegates
executed in order

Send is
synchronous

Post is
asynchronous

Default (Thread
Pool based)

No – any thread in
the thread pool

No No Yes Yes

ASP.NET No – any thread in
the thread pool

Yes No Yes No

WinForms, WPF,
WinRT, Xamarin,
Blazor

Yes – UI thread Yes Yes Only if called on
the UI thread

Yes

ASP.NET Core No – any thread in
the thread pool

No No Yes Yes

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 45

In ASP.NET only one continuation can be executed at a time for given request - no concurrency.
In ASP.NET Core multiple continuations can run concurrently – we have concurrency and parallelism.

State machine
COROUTINE COMPILER LEVEL TRANSFORMATION

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 46

State machine 1 – before compilation
OurAsyncMethod has four parts

◦ First part will run synchronously as the
Task.FromResult is already resolved

◦ Second part will eventually block because of the
delay

◦ Third part will block and explicitly create
continuation

◦ Fourth part with just throw exception

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 47

State machine 2 – method after
compilation

async is no longer there — it is only on C# level.

DebuggerStepThroughAttribute tells the debugger to step
through (ignore) the method.

Program.<OurAsyncMethod>d__1 <OurAsyncMethod>d__
type created to encapsulate state machine pieces.

State is initialized to -1 meaning „ready to do some work”.

AsyncTaskMethodBuilder is a .NET class capable of
executing the state machine.

Effectively we prepare the machine, start it and return the
Task object with the result.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 49

State machine 3 – fields
Program.<OurAsyncMethod>d__1 <OurAsyncMethod>d__
type created to encapsulate state machine pieces.

<OurAsyncMethod>d__.<>1__state variable maintains the
state

◦ Initially it is set to -1 meaning „not started”

◦ -2 means „done”

◦ Non-negative states indicate different pieces of the state
machine

Three different awaiters as we have await three times in
the original method.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 50

State machine 4 – Start method

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 51

State machine 5 – exception handling
We capture the state to local variable.

We handle all exceptions and terminate the
machine if needed.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 52

State machine 6 – states
Awaiter at the beginning for different result
types.

Four different branches as we have await
three times generating four blocks.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 53

State machine 7 – num = -1, state = -1
await Task.FromResult(false);

It starts in default.

We print to the console
and get awaiter for the
result.

If it is completed (as this is
the case now)

◦ We call GetResult which
returns the value
immediately

◦ We end in line 72

◦ num = -1, state = -1

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 54

State machine 8 – num = -1, state = -1
await Task.Delay(200);

It starts in line 73.

We print to the console and
get the awaiter.

If it is not completed
◦ We change the state (so we

know where to come back)

◦ We call
AwaitUnsafeOnCompleted
(see in a bit)

◦ And then we return

Later we continue in case 1
◦ We jump to the label IL_FA

and end in line 84

◦ num = 1, state = -1

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 55

AsyncTaskMethodBuilder.AwaitUnsafeOnCompleted

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 56

AwaitUnsafeOnCompleted —
GetCompletionAction

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 57

MoveNextRunner

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 58

TaskAwaiter.AwaitUnsafeOnCompleted

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 59

Task.SetContinuationForAwait

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 60

SynchronizationContextAwaitTaskContinuation.Run

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 61

SynchronizationContextAwaitTaskContinuation.PostAction

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 62

State machine 9 – num = 1, state = -1
await Task.Yield();

We start in line 85

We print to the
console, get awaiter
and check if it is
completed.

It is not:
◦ We set the state
◦ Wait for the task
◦ And return

Later we continue in
case 2, jump to the
label IL_168 and end
in line 96.

num = 2, state = -1

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 63

YieldAwaiter.AwaitUnsafeOnCompleted

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 64

State machine 10 – num = 2, state = -1
After last await

We start in line 97.

This part had no await in it so we just execute
the code.

We print to the console and throw the
exception.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 65

State machine in Debug vs Release
DEBUG = CLASS

// Token: 0x02000003 RID: 3
[CompilerGenerated]
private sealed class <OurAsyncMethod>d__1

RELEASE = STRUCT

// Token: 0x02000003 RID: 3
[CompilerGenerated]
[StructLayout(LayoutKind.Auto)]
private struct <OurAsyncMethod>d__1

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 66

Task vs void
ASYNC TASK ASYNC VOID

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 67

They capture the context in the same way.

If exception is thrown in async Task, it is then remembered in the context of Task object and propagated
when awaited or cleaned up.

In async void methods the exception is propagated immediately. This results in throwing unhandled
exception on the thread pool which kills the application.

AsyncTaskMethodBuilder.SetException

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 68

AsyncVoidMethodBuilder.SetException

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 69

AsyncVoidMethodBuilder.SetException

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 70

Deadlocks

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 71

Deadlocks
Because there is no thread we can cause a deadlock with just one thread!

Depending on the application type our code may run correctly or not.

Use async all the way up!

Use ConfigureAwait(false)
all the way down!

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 72

SynchronizationContext
async void DownloadButton_Click(object sender, EventArgs e)
{

// We are on the UI thread but we don’t block it
await ProcessDataAsync();

// We are back on the UI thread
resultTextBox.Text = "Done";

}

async Task ProcessDataAsync()
{

// We are still on the UI thread
var content = await DownloadAsync().ConfigureAwait(false);

// Because of ConfigureAwait we are most likely *not* on the UI thread but on the thread pool
// However, ConfigureAwait(false) *is* still required because of possible synchronous execution
// Always use ConfigureAwait(false) unless you really want to capture the context
await TransformAsync(content).ConfigureAwait(false);

}

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 73

Console

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 74

GUI

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 75

GUI

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 76

GUI

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 77

GUI

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 78

GUI

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 79

Unit test

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 80

Unit test

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 81

Blazor

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 82

Blazor

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 83

Blazor

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 84

Blazor

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 85

TaskCompletionSource
By default TaskCompletionSource runs continuations synchronously when setting the result.

Continuations work differently for async and ContinueWith:
◦ For await they run synchronously (almost always).

◦ For ContinueWith they run asynchronously (almost always).

We can modify TaskCompletionSource behavior by passing continuation creation flags.

As a workaround we can explicitly force the application to yield the continuation.

Use TaskCreationOptions.RunContinuationsAsynchronously where possible.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 86

TaskCompletionSource

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 87

ThreadPool starvation
ThreadPool supports global queue. Each thread has local queue as well.

Tasks are scheduled to global queue when:
◦ Thread enqueing item is not a thread pool thread

◦ ThreadPool.QueueUserWorkItem is used

◦ Task.Factory.StartNew with PreferFariness is used

◦ Task.Yield is used

Otherwise items are scheduled to local queue.

Tasks can be also awaited inline.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 88

ThreadPool starvation

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 89

Exception handling

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 90

Exceptions in async
VOID METHOD

One cannot await void method (sure?).

Exception is propagated but it is not
deterministic.

Use AsyncContext from AsyncEx library.

TASK METHOD

Exception is stored in the Task.

You can also await the method and have the
exception propagated.

When chaining in parent-child hierarchy
(TaskCreationOptions.AttachedToParent) we may
miss exceptions, even in AggregatedException.

If there is an unobserved exception, it is raised by
finalizer thread in UnobservedTaskException
event where it can be cleared. If not cleared, the
process dies (.NET 4) or the exception is
suppressed (.NET 4.5).

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 91

Exceptions in async

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 92

Exceptions in async

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 93

Exceptions in async

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 94

Exceptions in other threads
Unhandled exception kills the application in most cases.

If it happens on a thread pool it is held until awaiting and then propagated if possible (thrown
out of band for async void).

Catching unhandled exception with AppDomain.CurrentDomain.UnhandledException doesn’t
stop the application from terminating.

ThreadAbortException or AppDomainUnloadedException do not kill the application.

In .NET 1 it was different:
◦ Exception on a thread pool was printed to the console and the thread was returned to the pool.

◦ Exception in other thread was printed to the console and the thread was terminated.

◦ Exception on the finalizer was printed to the console and finalizer was still working.

◦ Exception on the main thread resulted in application termination.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 95

Hijacking thread creation

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 96

Stacking threads AggregateException
Task can create a child. It can be either attached
or detached.

Attached child task is coupled:
◦ Parent waits for it

◦ Parent propagates its exceptions.

Task can block others from attaching by
specifying DenyChildAttach. In that case child
executes normally when trying to attach to the
parent.

Contains all InnerExceptions – if a Task has child
task, the exceptions create a tree (instead of a
list).

Has method Flatten which makes a list from the
exception tree.

Even if only one exception is thrown, it is still
wrapped.

Can be retrieved by waiting for the task or by
checking its Exception property.

Contains method Handle which takes care of
rethrowing exception if it is not of a correct type.

Works weird for await code.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 97

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 98

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 99

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 100

UnobservedTaskException

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 101

Awaiting async void
We cannot do it directly as method returns nothing.

We need to implement custom synchronization context.

To handle exceptions we need to write custom task scheduler.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 102

await async void

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 103

Catch exceptions in async void

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 104

Summary
Know your synchronization context — and don’t abuse it!

Do not use async void methods if you don’t have to.

Have async all the way up.

Don’t wait for asynchronous methods in synchronous code if you don’t have to.

Avoid creating threads if you can.

Always await tasks, handle all the exceptions.

Always add handlers to unobserved exceptions and unhandled exceptions.

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 105

Q&A

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 106

References
Jeffrey Richter - „CLR via C#”

Jeffrey Richter, Christophe Nasarre - „Windows via C/C++”

Mark Russinovich, David A. Solomon, Alex Ionescu - „Windows Internals”

Penny Orwick – „Developing drivers with the Microsoft Windows Driver Foundation”

Mario Hewardt, Daniel Pravat - „Advanced Windows Debugging”

Mario Hewardt - „Advanced .NET Debugging”

Steven Pratschner - „Customizing the Microsoft .NET Framework Common Language Runtime”

Serge Lidin - „Expert .NET 2.0 IL Assembler”

Joel Pobar, Ted Neward — „Shared Source CLI 2.0 Internals”

Adam Furmanek – „.NET Internals Cookbook”

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md — „Book of the Runtime”

https://blogs.msdn.microsoft.com/oldnewthing/ — Raymond Chen „The Old New Thing”

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 107

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://blogs.msdn.microsoft.com/oldnewthing/

References
https://blog.adamfurmanek.pl/blog/2016/10/08/async-wandering-part-1/ — async in unit tests

https://blog.adamfurmanek.pl/blog/2017/01/07/async-wandering-part-3/ — WinForms

https://blog.adamfurmanek.pl/blog/2017/06/03/capturing-thread-creation-to-catch-
exceptions/ — overriding Thread constructor to handle exceptions

https://blog.adamfurmanek.pl/blog/2017/01/14/async-wandering-part-4-awaiting-for-void-
methods/ — awaiting async void

https://blog.adamfurmanek.pl/blog/2018/10/06/async-wandering-part-5-catching-exceptions-
from-async-void/ — catching exceptions in async void

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 108

https://blog.adamfurmanek.pl/blog/2016/10/08/async-wandering-part-1/
https://blog.adamfurmanek.pl/blog/2017/01/07/async-wandering-part-3/
https://blog.adamfurmanek.pl/blog/2017/06/03/capturing-thread-creation-to-catch-exceptions/
https://blog.adamfurmanek.pl/blog/2017/01/14/async-wandering-part-4-awaiting-for-void-methods/
https://blog.adamfurmanek.pl/blog/2018/10/06/async-wandering-part-5-catching-exceptions-from-async-void/

References
https://www.codeproject.com/Articles/662735/Internals-of-Windows-Thread - Windows threads

http://aviadezra.blogspot.com/2009/06/net-clr-thread-pool-work.html - .NET ThreadPool

https://mattwarren.org/2017/04/13/The-CLR-Thread-Pool-Thread-Injection-Algorithm/ — ThreadPool injection algorithm

http://www.microsoft.com/download/en/details.aspx?id=19957 — TAP

https://msdn.microsoft.com/en-us/magazine/gg598924.aspx?f=255&MSPPError=-2147217396 – It’s all about the synchronization context

https://blogs.msdn.microsoft.com/seteplia/2018/10/01/the-danger-of-taskcompletionsourcet-class/ - TaskCompletionSource

https://blog.stephencleary.com/2014/04/a-tour-of-task-part-0-overview.html - Task internals

https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html — ASP.NET Core sychronization context

https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncontext-vs-synchronizationcontext/ — ExecutionContext internals

https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-3-runtime-context — ExecutionContext internals

https://blogs.msdn.microsoft.com/seteplia/2017/11/30/dissecting-the-async-methods-in-c/ - State machine

https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-1-compilation - State machine

https://github.com/dotnet/runtimelab/issues/2398 - .NET Green Thread experimentations

https://github.com/dotnet/runtimelab/blob/feature/green-threads/docs/design/features/greenthreads.md - .NET Green Thread Reports

09.01.2024 109INTERNALS OF ASYNC - ADAM FURMANEK

https://www.codeproject.com/Articles/662735/Internals-of-Windows-Thread
https://mattwarren.org/2017/04/13/The-CLR-Thread-Pool-Thread-Injection-Algorithm/
http://www.microsoft.com/download/en/details.aspx?id=19957
https://msdn.microsoft.com/en-us/magazine/gg598924.aspx?f=255&MSPPError=-2147217396
https://blogs.msdn.microsoft.com/seteplia/2018/10/01/the-danger-of-taskcompletionsourcet-class/
https://blog.stephencleary.com/2014/04/a-tour-of-task-part-0-overview.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncontext-vs-synchronizationcontext/
https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-3-runtime-context
https://blogs.msdn.microsoft.com/seteplia/2017/11/30/dissecting-the-async-methods-in-c/
https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-1-compilation
https://github.com/dotnet/runtimelab/issues/2398
https://github.com/dotnet/runtimelab/blob/feature/green-threads/docs/design/features/greenthreads.md - .NET

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

09.01.2024 INTERNALS OF ASYNC - ADAM FURMANEK 110

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

