Ordering the Chaos

CONTACT@ADAMFURMANEK.PL
HTTP:.//BLOG.ADAMFURMANEK.PL
YFURMANEKADAM

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.

Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl
4 furmanekadam Random IT Utensils

IT, operating systems, maths, and more

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda

What is time?

Using clock in computer science.

Avoiding clock in computer science.

Real implementation.

Going beyond time.

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK

What is time?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

What is time

There is no one global time. Each machine has its own clock.

There is a delay between reading the clock value and processing it.
Clocks can differ between readers (Special Theory of Relativity by Einstein).
Clocks break over time (clock drift). Best of them have drift rate around 10~13 second.

Standard second is defined as 9,192,631,770 periods of transition between the two hyperfine
levels of the ground state of Caesium-133.

Coordinated Universal Time (UTC) is based on atomic time. It is synchronized and broadcasted
regularly. Signal can be received with accuracy to about 1 microsecond.

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 5

What is timezone

Not (only) a UTC offset!

Region of the globe observing a uniform standard time.
Most of the times it is a whole number of hours offset but can be 30 or 45 minutes.
Specifies offset and Daylight Saving Time (DST) shifts rules.

DST can start at various times of day (2:00 AM, midnight, 0:05 AM) and times of year (as early as
March and as late as June).

Storing a time with UTC offset is not enough because the offset may change.

How to show it to user for events half a year from now?

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 6

Timezones change

Instant date = DatatypeFactory.newInstance().newXMLGregorianCalendar(
"1899-12-30T07:20:00"

).toGregorianCalendar().toInstant();

System.out.println(LocalDateTime.ofInstant(date, Zoneld.of(
"Europe/Warsaw”

)).tolLocalTime());

// Prints 7:44

Timezones for Europe/Warsaw:

e UTC+1h /UTC+2h — since 1977
e UTC+1h — 1965-1976

e UTC+1h /UTC+2h — 1957-1964
e UTC+1:24h — 1800-1914

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 7

Standard Time Zones of the World

T T T T T
165 160 135

T
120

Arctic Ocea

‘Seattle
i Los Ange ﬁ'\
ke 1 \§
N
r
.
\
=% L ..
»
- |
South
o | |
® Pacific
Ocean
C.AR. -Central African Republic
F.Y.R.0.M. -The Former Yugoslav Republic of Macedonia
UAE. -United Arab Emirates
~ Sun
1:00 2:00 3:00
11 10 9

17.12.2023

New
Orleans

-

1Y

s,

.o
BELIZE IAU’EI

AS

EL SALVADO! ARAGUA
|

PANAMA
COSTA RIC;

‘ £CU)

Boundary representation is

not necessarily authoritative.

Subtract time zone number from UTC to obtain local time,

North
ashington ° ..
Atlantic
Ocean 3
Wes|
HE BAHAMAS Sa|
[0® ouincin (
.‘N,\,S"E," o \MAURITAN
1 L cm;m. sEsiE
) B
g — GUINEA BISSAUT/ G INER
1\
VENEZUELA -{unsulfm‘“ | siERRa L‘ED\G
French Guiana LIBERIA
it
] L. | .
L]
BR
BOLIVIA
a ® South
Atlantic
CHILE! AY
Ocean
7
‘;%K
/
7:00 8:00 9.00 ™ 1000 11:00
5 4 3 2 % 1
Add time zone number to local time to obtain UTC, WEST

AND PRINCIPE

rouAToR
GUINE

Coordinated
Universal Time

u.T.C)
formerly
Greenwich
Mean Time
(G.m.1)

Sun /

12:00
0

EAST

wavsITUs.
»-CA‘ﬂ e .

®
Number indicates standard time
In zone when it Is 12 noon, UTC
13:00 14:00 15:00 16:00
1 2 3 4

Subtract time zone number from local time to obtain UTC.
Add fime zone number ta UTC to obtain local time UTC,

ORDERING THE CHAOS - ADAM FURMANEK

Ny
f Petropaviovsk- <

Kamchatskiy

British
jan Ocean
erritory
WKy

Indj

Oce

.dh . Istans "

Daylight Saving Time

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

't goes on and on

Amsterdam was once at the UTC+00:19:32.13 (19 minutes). It was generally simplified to UTC+0:20.

Offsets go from -12 to +14. Kiribati is on the very west of the world but is the first to observe the new
year.

There are cities with multiple time zones like Michigan City, IN.
Gold Coast (city in Australia) spans across two states which have different time zones in summer.

Gold Coast Airport’s runway crosses the state line. Its one end is in different timezone than the other.
Airport observes one time, though.

Russian Railways (except Sakhalin railways) followed Moscow Time. Starting in 2018 they follow local
time.

Genrally, Arizona doesn’t observe DST. Navajo Reservation in Arizona does, while Hopi Reservation
does not. Jeddito, AZ is a town in Navajo Reservation, surrounded by the Hopi Reservation, which is in
turn surrounded by the rest of the Navajo Reservation.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 10

UTC vs GMT

UTC GMT

Based on atomic clock. Based on rotation of the Earth.

Is an approximation of GMT. Can differ from UTC by up to 0.9 second.
Uses leap seconds to stay close to GMT. Now replaced by UT1.

Is a time. Is a timezone.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 11

Leap second

Second added to UTC time to maintain distance to solar time. It can be deleted but this hasn’t
happened.

It can break your system! It happened on 2012-06-30.

The Altea reservation and departure system run by Amadeus, one of the largest computer travel
reservation systems on the planet, couldn’t cope and crashed. For 48 minutes, passengers and

staff at Qantas and Virgin Australia were thrown back into the 1990s world of manual check-in
and delayed flights.

The problem was (...) Linux, and back then the addition or removal of a leap second sent the
system into meltdown — the system would deadlock.

The bug was found to affect kernels version numbers 2.2.26 to 3.3, inclusive.

https://www.theregister.co.uk/2015/01/09/leap_second_bug_linux_hysteria/

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 12

How is time distributed

Internet Assigned Numbers Authority (IANA) distributes a
database called Time Zone Database (tz or zoneinfo).

t is updated multiple times a year.

~or example 2019b released on 2019-07-01.

RFC 6557 Procedures for Maintaining the Time Zone
Database describes how to update the time.

Most Linux distributions use tzdata package which gets
regular updates.

How is time distributed

Unicode Common Locale Data Repository (CLDR) provides mappings for languages, timezones,
locales, parsing formats, country codes and much more.

Used by Microsoft (Windows), Apple (iOS), IBM, Google and many more.
Distributed as XML files.

For example version 35.1 released on 2019-04-17.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 14

L ocal time or UTC?

https://www.euronews.com/my-europe/2022/10/28/when-will-the-eu-end-seasonal-clock-changes-only-time-will-tell

UTC is not a silver bullet

THE CHAOS - ADAM FURMA

UTC is not a silver bullet

European Union considered dropping DST changes.

We want to organize an event at 9AM on May 18th 2025.

Currently, expected timezone is UTC+2.

Imagine that the country decides to go with UTC+1. This change will
be published sometime next year.

How do we store the start time now?

ORDERING THE CHAOS - ADAM FURMANEK 17

17.12.2023

UTC is not a silver bullet
Let’s store as UTC and never update

We can store the value in UTC timezone. We subtract 2 hours from
9AM and get the value:

2025-05-18T07:00:00Z

Country changes timezone. User comes to the system, we get UTC
time, add 1 hour and get 8AM. We are one hour ahead of the event!

Pros:
> Easy to implement

Cons:
> Doesn’t work — we have off by one error

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 18

UTC is not a silver bullet
Let’s store as UTC and update

We can store the value in UTC timezone. We subtract 2 hours from 9AM and get
the value:

2025-05-18T07:00:00Z

When we get an update of tz database, we recalculate the time. This time we
get:

2025-05-18T08:00:00Z

Pros:
° |t gives correct result

Cons:
> We need to store the original tz database version along with the data

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

UTC is not a silver bullet
Let’s store as local time

Store date provided by an organizer — event is at 9AM.

Whenever we get a request we recalculate the time on the fly.

Pros:
o |t works

Cons:
> We need to recalculate every time
° |f we cache results then we need to update them when tz database changes

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 20

News for the tz database

Release 2022b -[2022-68-16 15:38:32 -0700©

Briefly:
Chile's DST is delayed by a week in September 2822.
Iran no longer observes DST after 2022.
Rename Europe/Kiev to Europe/Kyiv.
New zic -R option
Vanguard form now uses %z.
Finish moving duplicate-since-197@ zones to 'backzone’.
New build option PACKRATLIST
New tailored_tarballs target, replacing rearguard_tarballs

Changes to future timestamps

Chile's 2022 DST start is delayed from September 4 to September 11.
(Thanks to Juan Correa.)

Iran plans to stop observing DST permanently, after it falls back

on 2022-89-21. (Thanks to Ali Mirjamali.)

https://data.iana.org/time-zones/tzdb-2022b/NEWS

ORDERING THE CHAOS - ADAM FURMANEK 21

17.12.2023

https://data.iana.org/time-zones/tzdb-2022b/NEWS

Problems with time

Minute has 60 seconds.

Month starts and ends on the same year.

Year has 365 days.

February has 28 days.

Week begins and ends in the same month.
Leap second is always inserted (never deleted).
Timezone is a whole number of hours offset.

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

22

ORDERING THE CHAOS - ADAM FURMANEK

17.12.2023

A month begins and ends in the same

year
January
France 1564 1582
Poland 1556 1582
Russia 1700 1918
Scotland 1600 1752
Spain 1556 1582
Sweden 1559 1753
Venice 1797 1582

https://en.wikipedia.org/wiki/Gregorian_calendar#Beginning_of the_year

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 23

February has 28 days

Every 4 years (more or less) it has 29 days.

It can have 30 days. It happened for real in Sweden in 1712.
In 1753 February 17 was followed by March 1.

Not to mention Symmetry454 calendar containing a 35-days February.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 24

A minute lasts 60 seconds or something
ike that. Definitely not an hour!

Due to a bug in KVM on CentQS a virtual machine didn’t update its time when the system was
put to sleep.

Whenever you suspended your machine its clock was drifting away. This could last minutes,
hours or days.

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

25

ORDERING THE CHAOS - ADAM FURMANEK

17.12.2023

Using clock in computer
sclence

Cristian’s algorithm for clock
synchronization

We send request to server at time T and get
answer at time T7.

CLOCK SERVER

, (T —Tp)
,\/E i\,p This bounds the error.
K A
i ' Q . .
& ; ; LN We repeat the process multiple times and
choose response with lowest round trip time.
"_TREQUEST_"; ;"‘_TRESF‘ONSE
TO® ROUND TRIP TIME(D) "'T'l i

PROCESSICLIENT

https://www.geeksforgeeks.org/cristians-algorithm/

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 27

Network Time Protocol (NTP)

We group machines in so called STRATUM

layers.
‘ ‘ STRATUM 0 is based on atomic clocks.
1 | STRATUM 1 is synchronized within few
] ﬂ . microseconds.
R\ [N
5 / \ / \ / \ There are multiple versions of standard. NTPv4
L J passes 128-bit timestamps.

PN

AN |

'8 B8-B g-8-8

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 28

Network Time Protocol (NTP)

Client polls multiple servers and performs
statistical analysis.

It calculates: Server 135ms137ms
> time offset § = La=to)* (t2=ts) Lt

2
o round-trip delay 6§ = (t3 — ty) — (t, — t1)

Outliers are discarded and time is estimated. Client

|

ly 3
Zalms Z298ms

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 29

Other approaches

Marzullo’s algorithm
o Estimates accurate time based on noisy sources

Intersection algorithm
o Used by NPT

o Similar to Marzullo’s algorithm, calculates center of interval differently

TrueTime
o Used by Google to synchronize time
o Each timestamp has a confidence interval no longer than 7ms
o Spanner utilizes timestamps to order transactions

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 30

Avoiding clock in
computer science

Clock we want

We want to be able to answer if event a happened before
event b.

We want to do it on multiple machines over the internet.

We want it to be fast, we can’t wait for miliseconds.

We are interested only in events of some flow — HTTP
request, offline job execution etc.

Lamport timestamp

Tells whether event a influenced b which we denoteasa — b.

Provides partial ordering of events across distributed system.
Logical clock counter maintained in each process separately.
Clock increases with every action within single process.

Across processes clock is synchronized when comunication is
performed. Maximum of two values is chosen.

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 33

Lamport timestamp

1. A process increments its counter before each event in
that process.

2. When a process sends a message, it includes its counter
value with the message.

3. On receiving a message, the counter of the recipient is
updated, if necessary, to the greater of its current counter
and the timestamp in the received message. The counter is
then incremented by 1 before the message is considered

received.

Lamport timestamp

0 0 0 0
| ' 8 10
20
30
40
.ED
60
70
80
60 80 100 76 85 100

https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-own-clock-The-clocks-run-at_fig7 246857366

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 35

Lamport timestamp

If event a happened before b and a influenced b (a — b) then
C(a) < C(b).

It works only when we can guarantee that one event influenced
another. It holds within the same machine or across communicating
machines.

Knowing thata — cand b — ¢ we know that ¢ didn’t cause a or b
but we don’t know which initiated c.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 36

Real implementation

Let’s start with manual implementation
first and then examine standards.

Implementation

CORRELATION ID LOGICAL TIME

Unique for given logical flow (i.e. User request) Local to machine (thread, core, fiber...).

Maintained across all involved parties. Updated in communication points.
Generated when message comes into the Ideally, passed automatically throughout the
system. system.

Never modified.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 38

Correlator

namespace DomainCommons.Correlations

{
' public interface ICorrelator
{
string GetCorrelationId();
int GetlLogicalTime();
void UpdatelLogicalTime(int newTime);
string Activity { get; set; }
k

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 39

using System;
using System.Threading;

namespace DomainCommons.Correlations

{
public abstract class Correlator : ICorrelator

{
private int logicalTime;

public abstract string GetCorrelationId();
public abstract string Activity { get; set; }

public int GetLogicalTime()

{
return Interlocked.Increment(ref logicalTime);

¥

public void UpdatelogicalTime(int newTime)

{
int currentTime, finalTime;

do

{
currentTime = logicalTime;

finalTime = Math.Max(currentTime, newTime);
} while (Interlocked.CompareExchange(ref logicalTime, finalTime, currentTime)

I= currentTime);

ORDERING THE CHAOS - ADAM FURMANEK 40

17.12.2023

Correlator

package pl.adamfurmanek.correlations.domaincommons,

public interface Correlator {
String getCorrelationId();
int getlogicalTime();
vold updatelogicalTime(int newTime);
String getActivity();
vold setActivity();

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 41

package pl.adamfurmanek.correlations.domaincommons;

public class BaseCorrelator implements Correlator {
private AtomicInteger logicalTime = new AtomicInteger();

public abstract String getCorrelationId();
public abstract String getActivity();
public abstract void setActivity();

public int getlogicalTime() {
return logicalTime.incrementAndGet();

h

public veoid updatelogicalTime(int newTime) {
int currentTime, tinalTime;

do 1
currentTime = logicalTime.get();
finalTime = Math.max{currentTime, newTime);
I while{logicalTime.compareAndSet(currentTime, finalTime);

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 42

Logger

namespace DomainCommons.Loggers

{
public interface IlLogger
{
void Log(LoglLevel level, string message);
ICorrelator Correlator { get; }
}

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 43

using System;

using System.Globalization;

using System.Threading;

using DomainCommons.Correlations;

namespace DomainCommons.Loggers

{
public abstract class Logger : ILogger

{
private readonly string loggerld;

public Logger(ICorrelator correlator)

{
Correlator = correlator;
loggerId = Guid.NewGuid().ToString();
}
public void Log(LoglLevel level, string message)
{
var segments = new object[]
{
Timestamp,
ApplicationName,
Instanceld,
Thread.CurrentThread.ManagedThreadld,
Correlator.GetCorrelationId(),
level,
Correlator.Activity,
Correlator.GetLogicalTime(),
loggerlId
b
LogWithNewLine($"\n[{string.Join("][", segments)}]\n{message}\n");
}

public ICorrelator Correlator { get; }

protected virtual string Timestamp => DateTime.UtcNow.ToString("yyyy-MM-dd HH:mm:ss.fff", Culturelnfo.InvariantCulture);
protected abstract void LogWithNewLine(string message);

protected abstract string ApplicationName { get; }

I
protected abstract string Instanceld { get; } -
} |

Logger

package pl.adamfurmanek.correlations.domaincommons;

public interface Logger {
void log({Loglevel level, String message);
Correlator getCorrelator();

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 45

package pl.adamfurmanek.correlations.domaincommons;

public abstract class Baselogger implements Logger {
private final S5tring loggerld,;
private final Correlator correlator;

public Logger(Correlator correlator) {
this.correlator = correlator;
loggerId = UUID.randomUUID().toString();

b

public veoid log{lLoglevel level, String message) {
loghithNewLine(String.format(“[%s][%s][%s][%s][%s][%s][%s][%s][%s] %sin”,

getTimestamp(),
getApplicationNama(),
getInstanceld(]},
Thread.currentThread().getId(),
correlator.getCorrelationId(),
level,
correlator.getActivity(),
correlator.getlogicalTime(),
loggerld,

message

)5
¥

protected String getTimestamp() {
return new Timestamp(System.currentTimeMillis()).toString(};

h

protected abstract void logWithNewLine(string message);
protected abstract string getApplicationMame();

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 46

Step 1

User comes to our
system.

S We need to generate
L= < . 8 correlation ID and logical

time.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 47

Memory based Correlator

using System;
using DomainCommons.Correlations;

namespace AzureCommons.Correlations

i public class MemoryBasedCorrelator : Correlator
| private readonly string| correlationId = Guid.NewGuid().ToString();
public override string GetCorrelationId()
i return correlationld;
;ublic override string Activity { get; set; }
; ¥

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 48

Memory based Correlator

package pl.adamfurmanek.correlations.domaincommons,

public class MemoryBasedCorrelator extends BaseCorrelator {
private final String correlationld = UUID.randomUUID{).toString();

public String getCorrelationid() {
return correlationld;

¥

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 49

Step 2

We call some node in
the system.

l We need to pass
= O0=C

correlation ID and
logical time in the
headers.

using System.Linq;

using System.Threading.Tasks;
using DomainCommons.Correlations;
using DomainCommons.Loggers;
using RestSharp;

namespace DomainServices.RestClient

{
internal class CorrelationRestClient : IRestClient
{
private readonly RestSharp.RestClient restClient;
private readonly ICorrelator correlator;
public CorrelationRestClient(RestSharp.RestClient restClient, ICorrelator correlator)
4
this.restClient = restClient;
this.correlator = correlator;
¥
public async Task<IRestResponse<T>> ExecuteTaskAsync<T>(IRestRequest request)
{
request.AddHeader(Constants.CorrelationldHeader, correlator.GetCorrelationId());
request.AddHeader (Constants.CorrelationCounterHeader, correlator.GetLogicalTime().ToString());
var result = await restClient.ExecuteTaskAsync<T>(request);
var correlationHeader = result.Headers.FirstOrDefault(h => h.Name == Constants.CorrelationCounterHeader);
if (correlationHeader != null)
{
correlator.UpdatelLogicalTime(int.Parse(correlationHeader.value.ToString()));
¥
‘ return result;
¥
}
¥
R mmmmmm——
17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 51

public class CustomClientHeadersFactory implements ClientHeadersFactory {
@Inject Correlator correlator;

@iverride public MultivaluedMap<String, String> update(
MultivaluedMap<5tring, String> incomingHeaders,
MultivaluedMap<5tring, S5tring>» clientOutgoingHeaders

) 1

MultivaluedMap<String, String> returnVal = new MultivaluedHashMap<>();
returnVal.putAll{clientOutgoingHeaders);

returnVal.putSingle(Constants.CORRELATION ID HEADER, correlator.getCorrelationId());
returnVal.putSingle(Constants.CORRELATION COUNTER_HEADER, correlator.getlogicalTime());

return returnVal,;

R
17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK

We get HTTP
request.

L= wp > We need to parse

headers.

using System;

using System.web;

using DomainCommons.Correlations;
using DomainCommons.Loggers;

namespace AzureCommons.Correlations

(public class RequestHeadersCorrelator : Correlator
! private readonly Lazy<string> correlationld;

public RequestHeadersCorrelator()

i correlationld = new Lazy<string>(GenerateCorrelationld);
var logicalTime = HttpContext.Current?.Request.Headers[Constants.CorrelationCounterHeader];
if (logicalTime == null)
¢ return;
}
UpdatelogicalTime(int.Parse(logicalTime));

)

public override string GetCorrelationId()

i return correlationId.value;

}

public override string Activity { get; set; }

private string GenerateCorrelationId()

i var id = (string)HttpContext.Current?.Items[Constants.CorrelationIditem] ??
HttpContext.Current?.Request.Headers[Constants.CorrelationIdHeader] ??
Guid.NewGuid().ToString();

if (HttpContext.Current != null)
i HttpContext.Current.Items[Constants.CorrelationIditem] = id;
}
— return id; —
}

@Component
public class ReguestHeaderCorrelator implements Filter Correlator {
@Override
public void doFilter(ServletReguest reg, ServletResponse res,
FilterChain chain) throws IOException, ServletException {
HttpServletRequest request = (HttpServletRequest) req;
updatelogicalTime(Integer.parselnt(request.getHeader{Constants.CORRELATION COUNTER_HEADER)));

chain.doFilter(req, res);

HttpServletResponse response = (HttpServletResponse) res;
response. setHeader(Constants.CORRELATION COUNTER_HEADER, getlogicalTime().toString());

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 55

Step 4

We send
response.

L= 88 We need to return
updated logical

time in headers.

namespace AzureCommons.Filters

{
public class WebApiCorrelationActionFilterAttribute : ActionFilterAttribute
{
public override void OnActionExecuting(HttpActionContext actionContext)
{
SetActivity(actionContext);
var logger = GetFromContainer<ILogger>(actionContext.Request);
logger.Log(LoglLevel.Information, $"Executing with parameters: {string.Join(", ", actionContext.ActionArguments.Select(p => $"{p.Key} = {p.Value}"))}.");
}
private static void SetActivity(HttpActionContext actionContext)
{
var actionDescriptor = actionContext.ActionDescriptor;
string actionName = actionDescriptor.ActionName;
string controllerName = actionDescriptor.ControllerDescriptor.ControllerType.FullName;
var correlator = GetFromContainer<ICorrelator>(actionContext.Request);
correlator.Activity = $"{controllerName}.{actionName}";
}
public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)
{
var logger = GetFromContainer<ILogger>(actionExecutedContext.Request);
logger.Log(LogLevel.Information, "Execution finished");
var correlator = GetFromContainer<ICorrelator>(actionExecutedContext.Request);
actionExecutedContext.Response?.Headers?.Add(Constants.CorrelationCounterHeader, correlator.GetlLogicalTime().ToString());
actionExecutedContext.Response?.Headers?.Add(Constants.CorrelationIdHeader, correlator.GetCorrelationId());
}
}
}

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 57

@Component
public class ReguestHeaderCorrelator implements Filter Correlator {
@Override
public void doFilter(ServletReguest reg, ServletResponse res,
FilterChain chain) throws IOException, ServletException {
HttpServletRequest request = (HttpServletRequest) req;
updatelogicalTime(Integer.parselnt(request.getHeader{Constants.CORRELATION COUNTER_HEADER)));

chain.doFilter(req, res);

HttpServletResponse response = (HttpServletResponse) res;
response. setHeader(Constants.CORRELATION COUNTER_HEADER, getlogicalTime().toString());

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 58

Step 5

We need to
update headers

L= < 1 from the

response.

using System.Linq;

using System.Threading.Tasks;
using DomainCommons.Correlations;
using DomainCommons.Loggers;
using RestSharp;

namespace DomainServices.RestClient

{
internal class CorrelationRestClient : IRestClient
{
private readonly RestSharp.RestClient restClient;
private readonly ICorrelator correlator;
public CorrelationRestClient(RestSharp.RestClient restClient, ICorrelator correlator)
4
this.restClient = restClient;
this.correlator = correlator;
¥
public async Task<IRestResponse<T>> ExecuteTaskAsync<T>(IRestRequest request)
{
request.AddHeader(Constants.CorrelationldHeader, correlator.GetCorrelationld());
request.AddHeader (Constants.CorrelationCounterHeader, correlator.GetLogicalTime().ToString());
var result = await restClient.ExecuteTaskAsync<T>(request);
var correlationHeader = result.Headers.FirstOrDefault(h => h.Name == Constants.CorrelationCounterHeader);
if (correlationHeader != null)
{
correlator.UpdatelLogicalTime(int.Parse(correlationHeader.value.ToString()));
¥
‘ return result;
¥
}
¥
R mmmmmm——
17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 60

public class BodyHandler implements MessageBodyReader<Message> |
@Inject Correlator correlator;

@Override
public Message readFrom{Class<Message> type, Type genericType,
Annotation[] annotations, MediaType mediaType,
MultivaluedMap<5tring, String> httpHeaders,
InputStream entityStream)
throws I0Exception, WebApplicationException {

correlator.updatelogicalTime(Integer.parselnt(httpHeaders.get(Constants.CORRELATION ID HEADER)));

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 61

Important remarks

We want to wire this up using dependency injection or other middleware.

It is crucial to pass Lamport timestamp in each communication method
> Queues

o Database

o Any proprietary RPC framework

Finally, we need to deliver logs to centralized place (Logstash, OMS, Cloud
Watch).

Finally, we can just filter logs using correlation ID and sort them using Lamport
timestamp.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

62

fields @message

Mame, instanceld, threadld, correlationId, level, activity, logicalTime, loggerId, message

display timestamp, apphlame, level, activity, logicalTime, message
| order logicalTime

R o [

1
2
3 filter [lcorrelationId = "@8e5fc3b-4f46-4152-baal-9746833des574"))
4
5

Logs | Visualization Export results ¥ | | Add to dashboard &
Showing 11 of 11 records matched @ Hide histogram
25 records (3.2 kB) scanned in 2.4s @ 10 records/s (1.6 kB/s)

10

g

G

i

2

0

09 AM 10 AM 11 AM 12 PM 01 PM 02 PM 03 PM 04 PM 05 PM 06 PM 07 PM 08 PM
timestamp appName level activity logicalTime message
P

1 2821-88-19T10:00:35.008Z7 LoadBalan. INFO Opensession 1 Starting session
|] 2821-88-19T10:08:38.801Z7 LoadBalan.. INFO OpenSession 2 Submitting workflow
= 2821-88-19T19:808:38.882Z Payment INFO ChargeClient 3 Charging account
| 2821-88-19T10:00:35.003Z Mailer INFO NotifyOwner 3 Sending emails
| =T 2821-88-19T10:00:38.004Z Mailer INFO NotifyOuner 4 Updating calendar
| 2821-88-19T19:88:38.886Z Payment INFO ChargeClient 4 Finishing payment
b7 2821-88-19T10:88:35.085Z Mailer INFO MNotifyluner 5 Finishing
B 2821-83-19T1@:88:38.88387 Payment INFO ChargeClient E Payment accepted
b o 2821-88-19T19:00:38.887Z Mailer INFO MNotifyOwner 6 Messages sent
p 18 2821-88-19T18:80:38.8097 LoadBalan.. INFO OpenSession 7 Finished notifications
11 2821-88-19T18:80:38.018Z LoadBalan.. INFO OpenSession - Finished payment

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

W3C Trace Context

§ 3.2.2.3 trace-id

This is the ID of the whole trace forest and is used to uniquely identify a distributed trace through a system. It

is represented as a 16-byte array, for example, 4bf92f3577b34daca3ce929doeve4736. All bytes as zero
(0000e0RER00RR0RRRRRRRERERRRRA) IS considered an invalid value.

If the trace-id value is invalid (for example if it contains non-allowed characters or all zeros), vendors MUST
ignore the traceparent.

See considerations for trace-id field generation for recommendations on how to operate with trace-id.

https://www.w3.org/TR/trace-context/#trace-id
https://iimmybogard.com/building-end-to-end-diagnostics-and-tracing-a-primer-trace-context/

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 64

https://www.w3.org/TR/trace-context/#trace-id
https://jimmybogard.com/building-end-to-end-diagnostics-and-tracing-a-primer-trace-context/

OpenTelemetry and Jaeger

KN @ Out-of-process

"0penTelemetry

autoinstrumentation.

No easy way to update
the clock on operation
return.

Correlation context could
be used but is optional.

Trace

What’s wrong with the
image?

https://www.opensourcerers.org/2022/04/18/using-opentelemetry-and-jaeger/

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK

Going beyond time

Vector clock

Generalization of Lamport timestamps.

We have N processes. Each process has its own logical clock.
Each process holds a copy of all clocks and chooses ,,smallest possible values”.
Initially all clocks are zero.

Each time a process experiences an internal event, it increments its own logical clock in the
vector by one.

Each time a process sends a message, it increments its own logical clock in the vector by one and
then sends a copy of its own vector.

Each time a process receives a message, it increments its own logical clock in the vector by one
and updates each element in its vector by taking the maximum of the value in its own vector
clock and the value in the vector in the received message (for every element).

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 67

Vector clock
Time

A

A0

22
B:5
5

https://en.wikipedia.org/wiki/Vector_clock

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 68

Vector clock

Provides partial ordering property.

Let’s say that VC(a) = [aq, a,, ..., a,,] is a vector clock of a.

We say that VC(a) < VC(b) if for each component VC(a;) <
VC(b;) and for at least one component VC(a;) < VC(b;).

Ifa — bthenVC(a) < VC(b). Similar to Lamport timestamp.

However, if VC(a) < VC(b) then we know a happened before b.

Other clocks

Tree Clocks
o Generalization of vector clocks

° Works when number of processes is dynamic

Plausible Clocks
o Take less space than vector clocks
o Can order events totally

Bloom Clocks
° Probabilistic data structure
o Space complexity independent of the number of nodes in the system
> No false negatives (= if two clocks are not comparable then Bloom Clocks can deduce that)

Matrix clock
o Vector of vector clocks
o Provides lower bounds on what other hosts know

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 70

Byzantine generals

~ Lieutenant

General

Malicious!‘

Lieutenant

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 71

Byzantine failure

n distributed systems, component will fail.

t may stop responding.

t may violate protocol.
t may repeat messages.

t may send out broken messages.

k-fault tolerance

System is k-fault tolerant if it survives faults in kK components
and still meets specification.

Without Byzantine failures we need k + 1 components to be
k-fault tolerant
>We just need to get answer from one component

With Byzantine failures we need 2k + 1 components to be k-
fault tolerant
> We need to do voting with regular majority

ORDERING THE CHAOS - ADAM FURMANEK 73

17.12.2023

Consensus problem

Agreeing on a decision in a distributed system where each
node can fail.

We want the following property:

o Termination
o Every correct process decides some value after a finite steps

° Integrity

o |f all the correct processes proposed the same value then this value must be decided

> Agreement
o Every correct process must decide on the same value

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 74

Consensus problem

With k faulty components we need 3k + 1
components in total to reach agreement.

But! If we cannot guarantee bounded message
delivery, we cannot reach agreement if one
component dies.

Consensus problem

Unordered Ordered

Yes Bounded Delay

Synchronous

Yes Unbounded Delay

YES Yes Yes Yes Bounded Delay

Asynchronous

Yes Yes Unbounded Delay

Unicast Multicast Unicast Multicast

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 76

Raft

Replicated state
machine starts.
Initially, every node is

a follower
~

Follower times
out. Starts an
election to get
elected as the
leader

Mo leader elected.
Contest election
again. Candidate receives
f majority votes. Becomes

leader.

Follower Node

Leader Node

Candidate Node

|1 |

Another node becomes
leader or new term starts.
Candidate becomes
follower.

Discovers another node with
higher term. Becomes
follower. J

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK

Moving forward

If we have consensus, we can easily implement:
> Total ordered broadcast

°cCompare-And-Set (CAS)
°Increment-And-Get (IAG)

Finally, we can easily order logs so we know exactly what
was happening.

But this introduces very long delays.

This his hard!

https://github.com/jepsen-io/jepsen

A framework for distributed systems verification, with fault
Injection

https://github.com/jepsen-io/jepsen

Summary

Wall clock is not useful in distributed systems.

Synchronizing clocks is hard. We can do that but we want to avoid doing that.

Logical clocks can be veary simple or very sophisticated. It depends on our
needs.

Things will not become easier. Timezones change constantly, we cannot
overcome physics limitations, some things are proven to be unsolvable.

Anything in your system can go wrong but if your logging mechanism fails then
things are very bad.

Use Jepsen.

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK 80

Q&A

References

Andres S. Tanenbaum — , Distributed Systems: Principles and Paradigms”

George Coulouris, Jean Dollimore. Tim Kindberg, Gordon Bliar — ,,Distributed Systems Concepts
and Design”

Benjamin Erb — ,, Concurrent Programming for scalable web architecture”
Martin Kleppmann — ,, Designing Data Intensive Applications”
Brendan Burns — ,, Designing Distributed Systems”

Adam Furmanek — ,,.NET Internals Cookbook”

17.12.2023

ORDERING THE CHAOS - ADAM FURMANEK 82

References

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time —
falsehoods programmers believe about time

https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-
own-clock-The-clocks-run-at fig7 246857366 — Lamport timestamps

https://medium.com/@balrajasubbiah/lamport-clocks-and-vector-clocks-b713db1890d7 —
Lamport clocks and vector clocks

http://blog.adamfurmanek.pl/2017/12/16/logging-in-distributed-system-part-1/ — logging in
distributed system implementation

17.12.2023 ORDERING THE CHAOS - ADAM FURMANEK]

https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
https://www.researchgate.net/figure/Lamport-timestamps-a-Three-processes-each-with-its-own-clock-The-clocks-run-at_fig7_246857366
https://medium.com/@balrajasubbiah/lamport-clocks-and-vector-clocks-b713db1890d7
http://blog.adamfurmanek.pl/2017/12/16/logging-in-distributed-system-part-1/

Random IT Utensils

Thanks!

CONTACT@ADAMFURMANEK.PL
HTTP://BLOG.ADAMFURMANEK.PL
FURMANEKADAM

17.12.2023 ORDERING THE CHAQS - ADAM FURMANEK 84

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

