
Async with Fibers
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

ASYNC WITH FIBERS - ADAM FURMANEK09.01.2024 1

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 2

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda
Why async.

OS Thread vs Others.

Demos.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 3

Why async

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 4

Asynchronous Programming Model
(APM)
BeginOperation returns an object implementing
IAsyncResult.

◦ Triggers the asynchronous calculations on different
thread.

◦ Can also accept a callback to be called when the
operation is finished.

IAsyncResult:
◦ Has some AsyncState.
◦ Contains WaitHandle which we can use to block the

application.
◦ Has flag indicating whether the operation is

completed.

EndOperation accepts IAsyncResult as a parameter
and returns the same as synchronous counterpart.

◦ Throws all exceptions if needed.
◦ If the operation hasn’t finished, blocks the thread.

var fs = new FileStream(@"C:\file.txt");

byte[] data = new byte[100];

fs.BeginRead(data, 0, data.Length,
(IAsyncResult ar) =>

{

int bytesRead = fs.EndRead(ar);

fs.Close();

}, null

);

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 5

Event-based Asynchronous Pattern (EAP)
MethodNameAsync.

◦ Triggers the operation on a separate thread.

MethodNameCompleted.

◦ Event fired when the operation finishes.

◦ Passes parameter AsyncCompletedEventArgs.

AsyncCompletedEventArgs:

◦ Contains flag if the job was cancelled.

◦ Contains all the errors.

◦ Has some UserState.

Can be canceled.

Can be used easily with BackgroundWorker.

backgroundWorker.DoWork += backgroundWorker_DoWork;

private void backgroundWorker_DoWork(object sender,
DoWorkEventArgs e)

{

// ...

}

private void
backgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{

// ...

}

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 6

Task-based Asynchronous Pattern (TAP)
Task.Run accepting delegate triggers the job:

◦ Equivalent to
Task.Factory.StartNew(job, CancellationToken.None, TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);

◦ Unwraps the result if needed (so we get Task<int> instead of Task<Task<int>>).

Task can be created manually via constructor and schedulled using Start method.

Can be joined by using ContinueWith.

Exceptions are caught and propagated on continuation.

Can be used with TaskCompletionSource.

Can be cancelled with CancellationToken.

Can report progress using IProgress<T>.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 7

Parallel Language Integrated Queries
(PLINQ)
Created when AsParallel called on IEnumerable. Can be reverted by AsSequential.

Operations defined in ParallelEnumerable class.

Can be ordered by calling AsOrdered.

Task merging can be configured by specifying ParallelMergeOptions.

Maximum number of concurrent tasks can be controlled using WithDegreeOfParallelism.

Parallelism is not mandatory! Can be forced with ParallelExcecutionMode.

Each AsParallel call reshuffles the tasks.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 8

async and await
await can be executed on anything awaitable – not necessarily a Task!

◦ Task.Yield returns YieldAwaitable

Duck typing - awaitable type must be able to return GetAwaiter() with the following:
◦ Implements INotifyCompletion interface

◦ bool IsCompleted { get; }

◦ void OnCompleted(Action continuation);

◦ TResult GetResult(); // or void

async means nothing — it only instructs the compiler to create a state machine.

We can make any type awaitable using extension methods!

Very similar to foreach.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 9

Awaiting on integer

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 10

Asynchronous code does not block
the operating system level thread.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 11

async in C#
async in C# is implemented as:
◦coroutine compiler level transformation with

◦service locator for promise orchestration and

◦statically bound promise factories

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 12

async milestones
C# with Async CTP in 2011. Then with version 5 in 2012.

Haskell async package in 2012.

Python with version 3.5 in 2015.

TypeScript with version 1.7 in 2015.

JavaScript with ECMAScript 2017.

Rust with version 1.39.0 in 2019.

C++ with version 20 in 2020.

Java with version 17 with completely different approach – Loom.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 13

OS Thread vs Others

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 14

Native thread
Two types: foreground and background (don’t stop application from terminating).

Consists of Thread Kernel Object, two stacks (user mode and kernel mode) and Thread
Environment Block (TEB).

User mode stack by default has 1 MB, kernel mode has 12/24 KB.

Has impersonation info, security context, Thread Local Storage (TLS).

Windows schedules threads, not processes!

How many threads does the notepad.exe have?

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 15

Managed thread
Has ID independent of native thread ID.

Can have name.

Can be suspended but this should not be done! Can be
aborted by Thread.Abort but this doesn’t guarantee
anything.

Precommits stack when created.

Unhandled exception kills the application in most
cases.

In .NET 1 it was different:
◦ Exception in other thread was printed to the console and

the thread was terminated.
◦ Exception on the finalizer was printed to the console and

finalizer was still working.
◦ Exception on the main thread resulted in application

termination.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 16

Green Threads or Virtual Threads
Scheduled by a runtime library or virtual machine.
Not by the OS.

They run in user space.

The name comes from The Green Team at Sun
Microsystems designing the original thread library for
Java.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 17

Green Threads
ADVANTAGES

Can be started much faster on some VMs.

They outperform native threads (YMMV) on
synchronization.

DISADVANTAGES

On a multi-core procesor cannot assing work
to multiple processors.

They underperform on I/O and context
switching.

They must use asynchronous I/O operation –
otherwise they block all green threads.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 18

Other variations
Erlang uses Green Processors as they do not share data memory directly (that’s a simplification).

Go uses Goroutines which are run in virtual threads.

Julia uses green threads for tasks.

Stackless Python uses Tasklets.

Cpython uses Greenlets, Eventlets, Gevents.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 19

Coroutines
Methods which can be suspended and resumed.

Used for event loops, iterators, Infinite lists, pipes.

Generalize subroutines.

They are cooperatively multitasked.

They are a language-level construct.

Generators are called Semicoroutines – Coroutine can
control where execution continues after yield. One can be
implemented with another by using Trampoline.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 20

yield

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 21

Drawbacks
The introduce function colouring.

They can’t be used in constructors or void methods.

They may change exceptions handling mechanisms (as we exit function immediately and
introduce try+catch blocks).

They increase memory allocation.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 23

Async Method

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 24

Async Method after compilation

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 25

Continuation Passing Style
Control is passed explicitly in the form of a
continuation.

Function takes an extra argument- a function – and
invokes it upon completion.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 27

CPS

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 28

call-with-current-continuation
call/cc
Takes one function as an argument: call/cc f

Calls f with current continuation of the expression.

Can be used to implement language constructs like return or loops.

Is considered unreadable.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 29

call/cc

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 30

Prints 3 Prints 2

Fibers
Lightweight threads with cooperative multitasking.

They must manually and explicitly yield control.

They are system-level construct. They may be viewed
as an implementation of coroutines.

Supported by WinAPI.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 31

Drawbacks
They may have a significant memory footprint (just like threads)

◦ There are tricks to minimize the memory by using guard page and dynamically allocating stack or by
abandoning contiguous stacks and use segmented ones.

◦ Segmented stacks were abandoned due to the host-split problem where we call a method on a stack
boundary and repeatedly allocate and deallocate the page.

Thread Local Storage cannot be reliably used.

Blocking call blocks all fibers.

They can’t be used with thread-based synchronization primitives.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 32

Fibers
First, we need to convert a thread into a fiber with ConvertThreadToFiber

◦ This initializes OS structures.

◦ Method isn’t directly exposed in C#.

Then, we create fibers with CreateFiber
◦ Allocates a fiber object.

◦ Assigns a stack.

◦ Sets up an execution to begin at the specified start address.

◦ This does not schedule the fiber.

Then, we can schedule fibers with SwitchToFiber
◦ Saves the state of the current fiber and restores the state of the specified fiber.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 33

Demos

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 34

Coroutines
COROUTINE COMPILER LEVEL TRANSFORMATION

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 35

Fibers
DO NOT BLOCK THE OPERATING SYSTEM LEVEL THREAD

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 36

Monads
STATICALLY BOUND PROMISE FACTORIES

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 37

Generics
SERVICE LOCATOR FOR PROMISE ORCHESTRATION

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 38

But why?

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 39

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 40

Summary
Coroutines do not integrate with platform that well.

Global state is inflexible.

Green threads can simplify things significantly and make code cleaner.

Green threads can’t be easily used with OS thread-based primitives.

Know your synchronization context.

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 41

Q&A

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 42

References
Jeffrey Richter - „CLR via C#”

Jeffrey Richter, Christophe Nasarre - „Windows via C/C++”

Mark Russinovich, David A. Solomon, Alex Ionescu - „Windows Internals”

Penny Orwick – „Developing drivers with the Microsoft Windows Driver Foundation”

Mario Hewardt, Daniel Pravat - „Advanced Windows Debugging”

Mario Hewardt - „Advanced .NET Debugging”

Steven Pratschner - „Customizing the Microsoft .NET Framework Common Language Runtime”

Serge Lidin - „Expert .NET 2.0 IL Assembler”

Joel Pobar, Ted Neward — „Shared Source CLI 2.0 Internals”

Adam Furmanek – „.NET Internals Cookbook”

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md — „Book of the Runtime”

https://blogs.msdn.microsoft.com/oldnewthing/ — Raymond Chen „The Old New Thing”

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 43

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://blogs.msdn.microsoft.com/oldnewthing/

References
https://blog.adamfurmanek.pl/blog/2016/10/08/async-wandering-part-1/ — async in unit tests

https://blog.adamfurmanek.pl/blog/2017/01/07/async-wandering-part-3/ — WinForms

https://blog.adamfurmanek.pl/blog/2017/06/03/capturing-thread-creation-to-catch-
exceptions/ — overriding Thread constructor to handle exceptions

https://blog.adamfurmanek.pl/blog/2017/01/14/async-wandering-part-4-awaiting-for-void-
methods/ — awaiting async void

https://blog.adamfurmanek.pl/blog/2018/10/06/async-wandering-part-5-catching-exceptions-
from-async-void/ — catching exceptions in async void

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 44

https://blog.adamfurmanek.pl/blog/2016/10/08/async-wandering-part-1/
https://blog.adamfurmanek.pl/blog/2017/01/07/async-wandering-part-3/
https://blog.adamfurmanek.pl/blog/2017/06/03/capturing-thread-creation-to-catch-exceptions/
https://blog.adamfurmanek.pl/blog/2017/01/14/async-wandering-part-4-awaiting-for-void-methods/
https://blog.adamfurmanek.pl/blog/2018/10/06/async-wandering-part-5-catching-exceptions-from-async-void/

References
https://www.codeproject.com/Articles/662735/Internals-of-Windows-Thread - Windows threads

http://aviadezra.blogspot.com/2009/06/net-clr-thread-pool-work.html - .NET ThreadPool

https://mattwarren.org/2017/04/13/The-CLR-Thread-Pool-Thread-Injection-Algorithm/ — ThreadPool injection algorithm

http://www.microsoft.com/download/en/details.aspx?id=19957 — TAP

https://msdn.microsoft.com/en-us/magazine/gg598924.aspx?f=255&MSPPError=-2147217396 – It’s all about the synchronization context

https://blogs.msdn.microsoft.com/seteplia/2018/10/01/the-danger-of-taskcompletionsourcet-class/ - TaskCompletionSource

https://blog.stephencleary.com/2014/04/a-tour-of-task-part-0-overview.html - Task internals

https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html — ASP.NET Core sychronization context

https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncontext-vs-synchronizationcontext/ — ExecutionContext internals

https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-3-runtime-context — ExecutionContext internals

https://blogs.msdn.microsoft.com/seteplia/2017/11/30/dissecting-the-async-methods-in-c/ - State machine

https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-1-compilation - State machine

https://github.com/dotnet/runtimelab/issues/2398 - .NET Green Thread experimentations

https://github.com/dotnet/runtimelab/blob/feature/green-threads/docs/design/features/greenthreads.md - .NET Green Thread Reports

09.01.2024 45ASYNC WITH FIBERS - ADAM FURMANEK

https://www.codeproject.com/Articles/662735/Internals-of-Windows-Thread
https://mattwarren.org/2017/04/13/The-CLR-Thread-Pool-Thread-Injection-Algorithm/
http://www.microsoft.com/download/en/details.aspx?id=19957
https://msdn.microsoft.com/en-us/magazine/gg598924.aspx?f=255&MSPPError=-2147217396
https://blogs.msdn.microsoft.com/seteplia/2018/10/01/the-danger-of-taskcompletionsourcet-class/
https://blog.stephencleary.com/2014/04/a-tour-of-task-part-0-overview.html
https://blog.stephencleary.com/2017/03/aspnetcore-synchronization-context.html
https://blogs.msdn.microsoft.com/pfxteam/2012/06/15/executioncontext-vs-synchronizationcontext/
https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-3-runtime-context
https://blogs.msdn.microsoft.com/seteplia/2017/11/30/dissecting-the-async-methods-in-c/
https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-1-compilation
https://github.com/dotnet/runtimelab/issues/2398
https://github.com/dotnet/runtimelab/blob/feature/green-threads/docs/design/features/greenthreads.md - .NET

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

09.01.2024 ASYNC WITH FIBERS - ADAM FURMANEK 46

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

